Classical Comparison of Numerical Methods for Solving Differential Equations of Fractional Order

المؤلفون

  • Mufeedah Ahmed

DOI:

https://doi.org/10.65137/jhas.v4i7.103

الكلمات المفتاحية:

Fractional Calculus، Caputo fractional differential equations، Variationaliteration method، Gauss-Seidel method، Picard iteration

الملخص

In this paper, a numerical method is presented for finding the solution of differential equations. The main objective is to find the approximate solution of fractional differential equation of order . This work is a comparison of some available numerical methods for solving  linear "nonlinear" DEqs. of fractional order. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. The present study shows that when these methods are applied to linear "nonlinear" DEqs. of fractional order, they have different convergence and approximation error.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

التنزيلات

منشور

2023-11-18

كيفية الاقتباس

Ahmed, M. (2023). Classical Comparison of Numerical Methods for Solving Differential Equations of Fractional Order. مجلة العلوم الإنسانية والتطبيقية, 4(7), 263–274. https://doi.org/10.65137/jhas.v4i7.103