218925167620+ / 218919656575+ / 218916307390+ / 218911653137+
kshj@elmergib.edu.ly
رقم الإيداع المحلي
95 / 2020
دار الكتب الوطنية بنغازي
ISSN: 2706-9087
المجلد الخامس
العدد العاشر لشهر ديسمبر 2020

رجوع

BERNOULLI DIFFERENTIAL EQUATION OF SECOND ORDER WITH FRACTIONAL DERIVATIVE

تاريخ الاستلام: 15-10-2020م

تاريخ التقييم: 25-10-2020م

Pages:1-17

Mufeedah Maamar Salih Ahmed
الملخص:

في هذه الدراسة ، نقدم معادلة غير خطية من الدرجة الثانية مع اللاخطية من نوع برنولي ، والتي تشمل مشتقات الرتبة الكسرية. نحن نعتبر الحل العددي للمعادلة غير الخطية باستخدام طريقة التكرار Picard ، وتسعى الطريقة لفحص تقارب الحلول لهذا النوع من المعادلات. أظهر الحل الناتج أنه يمكن زيادة التقارب في كل مستوى تكرار. ومع ذلك ، مع زيادة عدد التكرارات ، هناك معدل تقارب سريع للحل التقريبي مع الحل التحليلي. جميع النتائج التي تم الحصول عليها باستخدام طريقة Picard الكلاسيكية في المعادلة وتمت مقارنتها مع الحل الدقيق.

الكلمات المفتاحية: المشتقات الكسرية ، معادلة برنولي التفاضلية من الدرجة الثانية ، طريقة التكرار بيكارد.

Abstract:

In this study, we present a second order nonlinear equation with nonlinearity of Bernoulli type, which include fractional order derivatives. We consider the numerical solution of the nonlinear equation using the Picard iteration method, the method seeks to examine the convergence of solutions of this type of equations. The resulting solution showed that the convergence could be increased at each iterate level. However, as the number of iterations increases, there is a rapid rate of convergence of the approximate solution to the analytic solution. All Results obtained with the classical Picard method on the equation and were compared with the exact solution.

Keywords: Fractional derivatives, Bernoulli differential equation of second order, Picard iteration method.

المراجع References

1. Adomian G. (1989) Nonlinear Stochastic Systems Theory and Applications to Physics, Kluwer Academic Publishers, Nether-lands,
2. Adomian G. and Rach, R. (1993) Analytic Solution of Nonlinear Boundary-Value Problems in Several Dimensions by Decomposition. Journal of Mathematical Analysis and Applications, 174, 118-137. http://dx.doi.org/10.1006/jmaa.1993.1105
3. Adomian G. (1994) Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers,Boston. http://dx.doi.org/10.1007/978-94-015-8289-6
4. Adomian G., Solution of physical problems by decomposition, Comput. Math. Appl., 27(1994), 145-154.
5. Aghajani, A.; Bana´s, J.; Jalilian, Y. Existence of solutions for a class of nonlinear Volterra singular integral equations. Comput. Math. Appl.( 2011), 62, 1215–1227.
6. Benchohra, M.; Lazreg, J.E. Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions. Rom. J. Math. Comput. Sci. 201 4, 4, 60–72.
7. Boyce W. E., & Diprima, R. C., (2001), Elementary Differential Equations and Boundary Value Problems . Sixth Edition , John Wiley & Sons, Inc.
8. Caputo M., Linear models of dissipation whose q is almost frequency independent, Geophysical Jo Royal Astronomical Society, (1967). vol. 13, no. 5, PP 529-539.
9. Chalishajar, D.N.; Karthikeyan, K. Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall’s inequality in Banach spaces. Acta Math. Sci. (2013), 33, 758–772.
10. Davison M. and Essex C., “Fractional differential equations and initial value problems,” The Mathematical Scientist, vol. 23, no. 2, pp. 108–116, 1998.
11. Diethelm K. and Ford N. J.. Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications; (2002), 265: 229-248.
12. Diethelm K.. The analysis of Fractional Differential equations. Spring- Verlag, (2010)
13. I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999.
14. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, (2006); Volume 204, North-Holland Mathematics Studies.
15. Miller, K. S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, (1993).
16. M. M. Ahmad, Classical Comparison of Numerical Methods for Solving Differential Equations of Fractional Order. Jour. of Hum. Sci. &Soc. Sci. 7 (2019). P.263-274.
17. Wazwaz A.M., El-Sayed S.M., A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. Math. Comput. 122 (2001) 393–405.
18. Wazwaz A.M., Adomian decomposition for a reliable treatment of the Emden–Fowler equation. Appl.