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 : الملخص 

المشتقات من الرتبة    علىفي هذا البحث نقدم معادلة برنولي اللاخطية من الدرجة الثانية والتي تشتمل  
تعتبُ من أحد الطرق العددية الكلاسكسية لإيجاد الحل    والتيبيكارد التكرارية    ت استخدام  ريقة   وقد الكسرية.  

  سرعة تقارب الحل التقريبي للحل المضبوط. واختبارالتقريبي لهذه المعادلة 

Abstract  
In this study, we present a second order nonlinear equation with nonlinearity 

of Bernoulli type, which include fractional order derivatives. We consider the 
numerical solution of the nonlinear equation using the Picard iteration method, the 
method seeks to examine the convergence of solutions of this type of equations. 
The resulting solution showed that the convergence could be increased at each 
iterate level. However, as the number of iterations increases, there is a rapid rate 
of convergence of the approximate solution to the analytic solution. All Results 
obtained with the classical Picard method on the equation and were compared 
with the exact solution.  

 
Keywords: Fractional derivatives, Bernoulli differential equation of second order, Picard 
iteration method.  
 
 
1. Introduction  

Linear and Nonlinear ordinary differential equations, we can find their exact 
solutions in Elementary Differential Equations [7]. The exact solution and 
numerical solutions of this kind of equations play an important role in physical 
science and in engineering fields; therefore, there have been attempts to develop 
new techniques for obtaining analytical solutions, which reasonably approximate 
the exact solutions. In recent years, many research workers have paid attention to 
find the solutions of linear and nonlinear differential equations by using various 
methods. Among these are, the Picard iteration method, and the Adomain 
decomposition method (ADM) which was introduced by G. Adomian [1- 4] to 
solve linear and nonlinear differential equations, and It is well known that the 
Adomian decomposition method and its modifications [17,18] are efficient 
methods to solve linear and nonlinear ODEs.  

Differential equations with fractional order derivative have recently proven to 
be strong tools in the modeling of many physical phenomena and in various fields 
of science and engineering. In [16] we constructed the approximate solutions of 
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fractional derivatives of order ,D and introduced simple comparison between 
several methods to found the numerical approximate solutions of the fractional 
derivatives. Therefore, we applied the Picard iteration method to solve  nonlinear 
differential equations of Bernoulli type with fractional derivatives, this study 
exhibit that the Picard iteration method is very efficient for nonlinear models, and 
it results give evidence that high accuracy can be achieved. 
2. Preliminaries 
According to the Riemann–Liouville approach to fractional calculus, the notation 
of the fractional integral of order 𝛼 (𝛼 > 0) is a natural consequence of the well-
known formula (usually attributed to Cauchy) that reduces the calculation of the 
n -fold primitive of a function f to a single integral of the convolution type. We 
shall start with the definitions. The Cauchy formula reads: 

𝐼 𝑓(𝑥) =
1

(𝑛 − 1)! (𝑥 − 𝑠) −1𝑓(𝑠)𝑑𝑠,      𝑥 > 0, 𝑛 ∈ ℕ
0

 (2.1) 
Definition: The Riemann-Liouville fractional order derivative of order 𝛼 of the 
left fractional derivative is defining by: 

𝐷 𝑓(𝑥): =
1

Γ(𝑛 − 𝛼)
𝑑

𝑑𝑥 (𝑥 − 𝑠) −1− 𝑓(𝑠)𝑑𝑠,       (2.2) 

where (.)G is the classical gamma function, and for a function f given on the 
interval [𝑎, 𝑏], 𝑛 − 1 ≤ 𝛼 ≤ 𝑛, 𝑛 is positive integer. In particular when 0 ≤ 𝛼 ≤
1 then: 

𝐷 𝑓(𝑥): =
1

Γ(1 − 𝛼)
𝑑

𝑑𝑥 (𝑥 − 𝑠)− 𝑓(𝑠)𝑑𝑠,       (2.3) 

The corresponding right Riemann-Liouville fractional derivative definition is 

𝐷 𝑓(𝑥): =
1

Γ(𝑛 − 𝛼)
−𝑑
𝑑𝑥 (𝑥 − 𝑠) −1+ 𝑓(𝑠)𝑑𝑠,       (2.4) 

where: 𝑛 − 1 ≤ 𝛼 < 𝑛. The derivative of a constant is obtained as non-zero using 
the above definitions (2.2)-(2.4) which contradict the classical derivative of the 
constant, which is zero. In 1967 Prof. M.Caputo proposed a modification of the R-
L definition of fractional derivative which can overcome this shortcoming of the 
R-L definition. 

Definition: The Liouville–Caputo fractional-order derivative of 𝑓is defined in the 
following form [8]. 

𝐷 𝑓(𝑥): = 1
Γ( − ) ∫ (𝑥 − 𝑠) − −1𝑓( )(𝑠)𝑑𝑠 ; where: 𝑛 − 1 ≤ 𝛼 < 𝑛. 

In this definition first differentiate 𝑓(𝑥), n-times then integrate 𝑛 − 𝛼-times. The 
disadvantage of this method is that differentiable n-times then the 𝛼- order 
derivative will exist, where 𝑛 − 1 ≤ 𝛼 < 𝑛.  
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In [11], the author discussed existence, uniqueness, and structural stability of 
solutions of nonlinear differential equations of fractional order. The following 
theorems presented in [11] that are very similar to the corresponding classical 
theorems known in the case of first-order equations.  

Theorem 2.1 (existence). Assume that 𝓓 ≔ [𝑎, 𝑥0] × [𝑦0
(0) − 𝜖, 𝑦0

(0) + 𝜖] with 
some    𝑥0 > 0 and some, 𝜀 > 0 and let the function 𝑓: 𝓓 ⟶ ℝ  be continuous. 
Furthermore, define 𝑥 ≔ 𝑚𝑖𝑛 {𝑥0, ( Γ( +1)

‖ ‖ ) }. Then, there exists a 
function 𝑦: [𝑎, 𝑥] ⟶ ℝ solving the initial value problem 𝐷 (𝑦 − 𝑇 −1[𝑦])(𝑥) =
𝑓(𝑥, 𝑦(𝑥)) with initial conditions: 

 𝑦( )(𝑎) = 𝑦0
( ), 𝑖 = 0,1, … , 𝑚 − 1, where 𝑇 −1[𝑦]  is the Taylor polynomial of 

order 𝑚 − 1 for 𝑦 centered at 𝑎. 

Theorem 2.2 (uniqueness). Assume that 𝓓 ≔ [𝑎, 𝑥0] × [𝑦0
(0) − 𝜖, 𝑦0

(0) + 𝜖] with 
some  𝑥0 > 0 and some 𝜀 > 0. Furthermore, let the function 𝑓: 𝓓 ⟶ ℝ  be 
bounded on 𝓓 and fulfill a Lipschitz condition with respect to the second variable; 
i.e., 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑧)| ≤ 𝐿|𝑦 − 𝑧| with some constant 𝐿 > 0 independent of 𝑥, 𝑦 and 𝑧. 

In the recent years, fractional calculus has played a very important role in various 
fields such as mechanics, electricity, chemistry, biology, economics, notably 
control theory, and signal and image processing. For further readings and details 
on fractional calculus, we refer to the studies by the authors, [13,14,5,9,10,6.15]  

3. Main Results 
In this paper, we study fractional differential equations associated to the 
derivative. We present the following second order nonlinear equation of Bernoulli 
type with fractional derivative as the form: 

𝑃(𝑥)𝐷2𝑦 + 𝑅(𝑥)𝐷 𝑦 + 𝑄(𝑥)𝐷𝑦 + 𝑆(𝑥)𝑦 = 𝑚 𝑃(𝑥)
𝑦 2

𝑦
+ 𝑅(𝑥)

𝑦
Γ(1 − 𝛼)𝑥

+ 𝑓(𝑥)𝑦  (3.1a) 
with initial conditions,  𝑦(𝑎) = 𝑦0, 𝑦 (𝑎) = 𝑦′0where 𝑃(𝑥) ≠ 0, 𝑄(𝑥) ≠ 0,𝑚 ≥ 2 
and also 𝑦0 and 𝑦0

′  are not equal to zero, where 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 is positive 
integer. We rewrite eq.(3.1a) as the form: 

𝑃(𝑥) 𝑦− 𝐷2𝑦 − 𝑚 𝑦− + 𝑅(𝑥) 𝑦− 𝐷 𝑦 −
Γ(1− )

+ 𝑄(𝑥)𝑦− 𝐷𝑦 + 𝑆(𝑥)𝑦1− = 𝑓(𝑥) (3.1b)  

To find solution for this type of differential equations, we shall reduce the 
Bernoulli’s equation (3.1a) to the linear equation by the transformation 𝑢 = 𝑦1− , 
and hence (3.1a) will becomes:  

1
1 − 𝑚

𝑃(𝑥)
𝑑2𝑢
𝑑𝑥

+ 𝑄(𝑥)
𝑑𝑢
𝑑𝑥

+ 𝑅(𝑥)𝐷 𝑢 + 𝑆(𝑥)𝑢 = 𝑓(𝑥) (3.2) 
subject to the initial conditions:  

𝑢(𝑎) = 𝑦1− (𝑎), 𝑢 (𝑎) = (1 − 𝑚)𝑦− (𝑎)𝑦 (𝑎) (3.3) 
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For solving (3.2) by the classical Picard iteration, we rewrite this equation as a 
system of first order equations, as follow: 
Let 𝑢1 = 𝑢 and 𝑢2 = 𝑢′, then we have:  

       𝑢′1 = 𝑢2  , 𝑢1(𝑎) = 𝑢1,0 

𝑢′2 =
1 − 𝑚
𝑃(𝑥)

(𝑓(𝑥) − 𝑆(𝑥)𝑢1) −
1

𝑃(𝑥)
(𝑄(𝑥)𝑢2 + 𝑅(𝑥)𝐷𝛼𝑢1)  , 𝑢2(𝑎) = 𝑢2,0 (3.4) 

where 𝑢1,0 , 𝑢2,0 are the initial values conditions for the system (3.4), and the 
equivalent integral equations of this system as follows: 

         𝑢1 = 𝑢1,0 + ∫ 𝑢2(𝜏)𝑑𝜏   

𝑢2 = 𝑢2,0 +
1 − 𝑚
𝑃(𝑥) (𝑓(𝜏) − 𝑆(𝜏)𝑢1)𝑑𝜏

𝑥

𝑎
−

1
𝑃(𝑥) (𝑄(𝜏)𝑢2 + 𝑅(𝜏)𝐷𝛼𝑢1)𝑑𝜏

𝑥

𝑎
  

(3.5) 

In view of the Picard iteration method, we construct the following iteration 
formulation: 

       𝑢1, = 𝑢1,0 + ∫ 𝑢2, −1(𝜏)𝑑𝜏   ,   𝑛 = 1,2, …  (3.6) 

𝑢2, = 𝑢2,0 +
1 − 𝑚
𝑃(𝑥) 𝑓(𝜏) − 𝑆(𝜏)𝑢1,𝑛−1 𝑑𝜏

𝑥

𝑎
−

1
𝑃(𝑥) 𝑄(𝜏)𝑢2, −1 + 𝑅(𝜏)𝐷𝛼𝑢1, −1 𝑑𝜏

𝑥

𝑎
  

In this paper, one numerical method presented for solving nonlinear Bernuolli 
equation with fractional derivative; where the approximate solution for eq. (3.1) is 
obtained from:   

𝑦 = √𝑢( ) = 𝑢1,  ( )  , 𝑖 = 0,1, …. 
In particular, we will be obtaining Bernoulli equation of second order when 
𝑄(𝑥) = 0 in eq.(3.1). Consequently, we will be repeating this method to find 
numerical solution for this type of the nonlinear Bernoulli equations and the 
results are perfect. (This my study unpublished yet). So, we will be previewing the 
solutions for the eq.(31) in the following examples. 

4.  EXAMPLES 

Example 1. Consider the following second order of nonlinear Bernuolli equation 
with fractional derivative: 

𝑦 − 𝑦 − 𝐷
1
2 𝑦 = 2

𝑦 2

𝑦
−

𝑦
√𝜋 𝑥

+ (
8

3√𝜋 
𝑥

3
2 +

1
√𝜋 𝑥

+ 2𝑥 − 2)𝑦2 (4.1) 

with initial conditions: 𝑦(0) = 1, 𝑦′(0) = 0, and  𝛼 = 1
2

, 𝑚 = 2 
To find solution for nonlinear differential equation, we shall reduce the 
Bernoulli’s equation to the linear equation by the transformation 𝑢 = 𝑦−1, hence 
the equation will become:  

1
(−1)

𝑑2𝑢
𝑑𝑥

−
𝑑𝑢
𝑑𝑥

− 𝐷
1
2 𝑢 = −(2 −

1
√𝜋 𝑥

− 2𝑥 −
8

3√𝜋 
𝑥

3
2)  

𝑑2𝑢
𝑑𝑥

−
𝑑𝑢
𝑑𝑥

− 𝐷
1
2 𝑢 = 2 −

1
√𝜋 𝑥

− 2𝑥 −
8

3√𝜋 
𝑥

3
2 (4.2) 

subject to the initial conditions: 𝑢(0) = 𝑦−1(0) = 1, 𝑢 (0) = (−1)𝑦−2(0) = 0 
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Consequently, we rewrite this equation as a system of first order differential 
equation, as the form: 
       𝑢′1 = 𝑢2  , 𝑢1,0 = 1 

𝑢′2 = 2 −
1

√𝜋 𝑥
− 2𝑥 −

8

3√𝜋 
𝑥

3
2 + 𝑢2 + 𝐷

1
2 𝑢1  , 𝑢2,0 = 0  

and the equivalent integral equations of this system as follows: 
       𝑢1 = 𝑢1,0 + ∫ 𝑢2(𝜏)𝑑𝜏0    

𝑢2 = 𝑢2,0 + 2 −
1

√𝜋 𝜏
− 2𝜏 −

8

3√𝜋 
𝜏

3
2 𝑑𝜏

𝑥

0
+ 𝑢2(𝜏) + 𝐷

1
2 𝑢1(𝜏) 𝑑𝜏

𝑥

0
  

(4.3) 

Hence, the classical Picard iteration will be taking the formula: 
       𝑢1, = 𝑢1,0 + ∫ 𝑢2, −1(𝜏)𝑑𝜏0    

𝑢2, = 𝑢2,0 + 2 −
1

√𝜋 𝜏
− 2𝜏 −

8

3√𝜋 
𝜏

3
2 𝑑𝜏

𝑥

0

+ 𝑢2, −1(𝜏) + 𝐷
1
2 𝑢1, −1(𝜏) 𝑑𝜏

𝑥

0
  

(4.4) 

The results in the following tables are showing: in table (1):  the first reiterations 
for solution of linear differential equation with fractional derivative (4.2) which 
are obtained by using Picard's method, in table (2): shows the results of the 
approximate solution for second order of nonlinear Bernuolli equation with 
fractional derivative (4.1), and comparing the eleventh iteration which obtained by 
Picard method with the exact solution. The results showed that the Picard iteration 
method is remarkably effective and performing is very easy. 
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Table 1 

𝑥  Exact
 

 
u  

PI: 1,11u  | |PIu u-  Exact
 

 
y  

PI: 1,11y  | |PIy y-  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.0 
1.01 
1.04 
1.09 
1.16 
1.25 
1.36 
1.49 
1.64 
1.81 
2.0 

1.0 
1.01 
1.04 
1.09 
1.16 
1.25 
1.36 
1.49 
1.64 
1.80999 
1.99998 

0.00 
1.77636×10-15 
1.61204×10-12 
9.4293×10-11 
1.71847×10-9 
1.64883× 10-8 
1.05295×10-7 
5.07342×10-7 
1.98814×10-6 
6.65127×10-6 
0.0000196372 

1.0 
0.990099 
0.961538 
0.917431 
0.862069 
0.8 
0.735294 
0.671141 
0.609756 
0.552486 
0.5 

1.0 
0.9900990099 
0.9615384615 
0.9174311927 
0.8620689668 
0.8000000106 
0.7352941746 
0.6711411681 
0.6097568367 
0.5524882181 
0.5000049094 

0.00 
1.77636 ×10-15 
1.49047×10-12 
7.93645×10-11 
1.27711×10-9 
1.05525×10-8 
5.69283×10-8 
2.28522×10-7 
7.39196×10-7 
2.03025×10-6 
4.90935×10-6 

Table 2: shows the approximate solutions for Eq. (4.1)  

 The following Figures represent the graphical presentation of u and y , where 
we compare the Picard iteration method 1,11u with the exact solution u for linear 
differential equation (4.2) on the graph (1), then we compare between the Picard 
method 𝑦1,11 with the exact solution for nonlinear Bernoulli equation of second 
order 𝑦 (4.1) on the graph(2). Numerical simulation shows that 𝑢1,11 and 𝑦1,11 
both grow with exact solutions. 

 
                 

              
Figure 1: comparing the approximate solution of 1,11u  with u  

 
               

             
Figure 2: comparing the approximate solution of 1,11y  with y  
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Example 2. Consider the following second order of nonlinear Bernuolli 
equation with fractional derivative: 

𝑦 + 𝑥 𝑦 + √
2

 𝐷
1
2 𝑦 + 1

2
𝑦 = 3

𝑦 2

𝑦
+

𝑦
2√𝑥

+ (
√𝑥
2

+
3 𝜋 
16

𝑥 −
1

8√𝑥
−

5
12

𝑥
3
2 −

𝑥2

2
)𝑦3 

(4.5) 

with initial conditions: 1 7(1) 1, '(1) , ''(1)
4 16

y y y -= = = , where 𝑚 = 3, 𝛼 = 1
2
 

To find solution for nonlinear fractional differential equation, we shall reduce the 
Bernoulli’s equation to the linear equation by transformation 2u y -= , hence the 
equation will becomes: 

𝑑2𝑢
𝑑𝑥 + 𝑥

𝑑𝑢
𝑑𝑥 +

√𝜋
2 𝐷

1
2 𝑢 − 𝑢 =

1
4√𝑥

− √𝑥 −
3 𝜋 

8 𝑥 +
5
6 𝑥

3
2 + 𝑥2 

(4.6) 

subject to the initial conditions: 𝑢(1) = 1, 𝑢′(1) = 1
2

, 𝑢′′(1) = 5
4
  

Consequently, we rewrite this equation as a system of first order differential 
equation, as the form: 

       𝑢1 = 𝑢2  

   𝑢2 = 1
4√𝑥

− √𝑥 − 3 𝜋 
8

𝑥 + 5
6

𝑥
3
2 + 𝑥2 + 𝑢1 − 𝑥 𝑢2 − √𝜋

2
𝐷

1
2 𝑢1  

(4.7) 

The classical Picard iteration will be taking the formula: 

       𝑢1, = 𝑢1,0 + ∫ 𝑢2, −1(𝜏)𝑑𝜏1    (4.8) 

 𝑢2, = 𝑢2,0 + ∫ 1
4√

− √𝜏 − 3  
8

𝜏 + 5
6

𝜏 + 𝜏2 + 𝑢1, −1(𝜏) − 𝜏 𝑢2, −1(𝜏) − √
2

𝐷  𝑢1, −1(𝜏) 𝑑𝜏1   

The results in the following tables are showing: in table (3):  the first reiterations 
for solution of linear differential equation with fractional derivative (4.6) which 
obtained by using Picard's method, in table (4): the approximate solution for 
second order of nonlinear Bernuolli equation with fractional derivative (4.5) 
obtained by Picard method, where 

1
2

1, 1, , 0,1,...,n ny u n
-

= =  and 1
2y u
-

= . The 

results showed that the Picard iteration method is remarkably effective and 
performing is very easy . 
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Table 3 

𝑥  Exact
 

 
u  

PI: 1,5u  | |PIu u-  Exact
 

 
y  

PI: 
1,5y  | |PIy y-  

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
0.95631026 
0.92546586 
0.90777194 
0.90349766 
0.91288269 
0.93614229 
0.97347118 
1.02504658 
1.09103073 
1.17157287 

1.0 
0.95622845 
0.92519479 
0.90726465 
0.90275036 
0.91194000 
0.93512403 
0.97261049 
1.02471547 
1.09171100 
1.17370699 

0.0 
0.000081815 
0.000271064 
0.000507297 
0.000747297 
0.000942687 
0.001018260 
0.000860688 
0.000331106 
0.000680268 
0.002134117 

1.0 
1.022587762 
1.039488762 
1.049570513 
1.052050249 
1.046628396 
1.033544228 
1.013534299 
0.987707152 
0.957373731 
0.923879533 

1.0 
1.022631507 
1.039641025 
1.049863906 
1.052485603 
1.047169214 
1.034106790 
1.013982650 
0.987866713 
0.957075405 
0.923039219 

1.0 
0.000043745 
0.000152264 
0.000293392 
0.000435353 
0.000540819 
0.000562563 
0.000448352 
0.000159561 
0.0002983262 
0.0008403138 

Table 4: shows the approximate solutions for Eq. (4.5) 
and fifth iteration obtained from Picard iteration  

In the following graphs, we compare the Picard iteration method 
1,5u with the 

exact solution u for linear system (4.8) on the graph (3), then we compare 
between the Picard method

1,5y  with the exact solution for nonlinear Bernoulli 
equation with fractional derivative y on the graph(4). 

 

 
                      

 
Figure 3: comparing the approximate solution of 

1,5u with u  
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Figure 4: comparing the approximate solution of 

1,5y with y  

Example 3. Consider the following second order of nonlinear Bernuolli equation 
with fractional derivative: 

𝑦 ′′ + 𝑦 ′ − 𝑥𝐷
3
2 𝑦 = 2

𝑦 ′2

𝑦 −
𝑦

Γ(−1
2 )𝑥

+ (
4

√𝜋
𝑥

3
2 +

8
√𝜋

𝑥
5
2 − 2 − 8𝑥 − 3𝑥2)𝑦2 (4.9) 

with initial conditions: 𝑦(1) = 1
2

, 𝑦′(1) = − 5
4

, 𝑦′′(1) = 1
4

, where 𝑚 = 2, 𝛼 = 3
2
, 

Γ −1
2

= −√𝜋. 

To find  a solution for nonlinear fractional differential equation, we shall reduce 
the Bernoulli’s equation to the linear equation by transformation 1u y -= , hence 
the equation will becomes:  

𝑑2𝑢
𝑑𝑥 +

𝑑𝑢
𝑑𝑥 − 𝑥𝐷

3
2 𝑢 = 2 + 8𝑥 + 3𝑥2 −

4
√𝜋

𝑥
3
2 −

8
√𝜋

𝑥
5
2 (4.10) 

subject to the initial conditions: 𝑢(1) = 2, 𝑢′(1) = 5,𝑢′′(1) = 8  
Consequently, the classical Picard iteration will be taking the formula: 

       𝑢1, = 𝑢1,0 + ∫ 𝑢2, −1(𝜏)𝑑𝜏1                                                                        (4.11) 

𝑢2, = 𝑢2,0 + 2 + 8𝜏 + 3𝜏2 −
4

√𝜋
𝜏

3
2 −

8
√𝜋

𝜏
5
2 −  𝑢2, −1(𝜏) + 𝑥 𝐷

3
2 𝑢1, −1(𝜏) 𝑑𝜏

1
  

The results in the following tables are showing: in table (5):  the first 
reiterations for solution of linear differential equation with fractional derivative 
(4.10) which obtained by using Picard's method, in table (6): the approximate 
solution for second order of nonlinear Bernuolli equation with fractional 
derivative (4.9) obtained by Picard method 1

1, 1, , 0,1,...,n ny u n-= = where 1y u -=

. The results showed that the Picard iteration method is remarkably effective and 
performing is very easy. 
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Table5 

𝑥  Exact
 

 
u  

PI: 
1,7u  | |PIu u-  Exact

 
 
y  

PI: 
1,7y  | |PIy y-  

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

2.0 
2.541 
3.168 
3.887 
4.704 
5.625 
6.656 
7.803 
9.072 
10.469 
12.0 

2.0 
2.53896894 
3.15856526 
3.86244936 
4.65368227 
5.53460852 
6.50677951 
7.57096136 
8.72728412 
9.97560204 
11.3161489 

0.00 
0.00203106 
0.00943474 
0.02455063 
0.05031772 
0.09039148 
0.14922049 
0.23203864 
0.34471588 
0.49339796 
0.683851005 

0.5 
0.393546 
0.315657 
0.257268 
0.212585 
0.177778 
0.15024 
0.128156 
0.110229 
0.0955201 
0.0833333 

0.5 
0.393861 
0.316599 
0.258903 
0.214884 
0.180681 
0.153686 
0.132084 
0.114583 
0.100245 
0.0883693 

0.00 
0.000314818 
0.000942877 
0.00163525 
0.00229857 
0.00290347 
0.00344547 
0.00392778 
0.00435391 
0.00472447 
0.00503595 

Table 6: shows the approximate solutions for Eq. (4.9) 
and the seventh iteration obtained from the Picard iteration  

In the following graphs, we compare the Picard iteration method 
1,7u with the 

exact solution u for linear system (4.11) on the graph (5), then we compare 
between the Picard method

1,7y  with the exact solution for nonlinear Bernoulli 
equation with fractional derivative y on the graph (6)  

 

               
   

 

Figure 5: comparing  the approximate solution of 
1,7u with u  
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Figure 6: comparing the approximate solution of 

1,7y with y  

Example 4. Consider the following second order of nonlinear Bernuolli equation 
with fractional derivative: 

𝑦 ′′ + 𝑥
2
3𝐷

4
3 𝑦 − 𝑦 ′ = 2

𝑦 ′2

𝑦
−

𝑦

Γ −1
3 𝑥

4
3

+ 𝑥2 − 2𝑥 −
2

Γ 8
3

𝑥3 𝑦2 (4.12) 

with initial conditions: 𝑦(1) = 3, 𝑦′(1) = −9, where𝑚 = 2, 𝛼 = 4
3
.  

To find solution for nonlinear fractional differential equation, we shall reduce the 
Bernoulli’s equation to the linear equation by transformation 𝑢 = 𝑦−1, hence the 
equation will becomes:  

𝑑2𝑢
𝑑𝑥 + 𝑥

2
3𝐷

4
3 𝑢 −

𝑑𝑢
𝑑𝑥 = 2𝑥 − 𝑥2 +

2

Γ 8
3

𝑥3 (4.13) 

subject to the initial conditions : 1(1) , '(1) 1
3

u u= =  

Consequently, we rewrite this equation as a system of first order differential 
equation, as the form:  
       𝑢1 = 𝑢2  
   𝑢2 = 2𝑥 − 𝑥2 + 2

Γ
𝑥 +  𝑢2 − 𝑥 𝐷  𝑢1                                                    (4.14) 

The classical Picard iteration will be taking the formula: 
       𝑢1, = 𝑢1,0 + ∫ 𝑢2, −1(𝜏)𝑑𝜏1     ; 𝑛 = 1,2, …                                           (4.15) 

 

 𝑢2, = 𝑢2,0 + ∫ 2𝜏 − 𝜏2 + 2
Γ

𝜏 + 𝑢2, −1(𝜏) − 𝜏 𝐷  𝑢1, −1(𝜏) 𝑑𝜏1   

The results in the following tables are showing: in table (9):  the first 
reiterations for solution of linear differential equation with fractional derivative 
(4.13) which obtained by using Picard's method, in table (10): the approximate 
solution for second order of nonlinear Bernuolli equation with fractional 
derivative. (4.12) obtained by Picard method. The results showed that the Picard 
iteration method is remarkably effective and performing is very easy . 
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Table 7 

 

𝑥  Exact 1,8u  | |PIu u-  Exact
 
y  PI: 

1,8y  | |PIy y-  
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

0.3333333 
0.4436667 
0.576 
0.7323333 
0.9146667 
1.125 
1.3653333 
1.6376666 
1.9440000 
2.2863333 
2.6666667 

0.3333333 
0.4436837 
0.5759277 
0.7318239 
0.9131761 
1.1219966 
1.3607357 
1.6325896 
1.9418977 
2.2946389 
2.6990436 

0.00 
0.0000168 
0.0000723 
0.0005094 
0.0014906 
0.0030034 
0.0045977 
0.0050769 
0.0021023 
0.0083056 
0.0323769 

3 
2.2539444 
1.7361111 
1.3654984 
1.0932945 
0.8888889 
0.7324219 
0.6106249 
0.5144033 
0.4373815 
0.375 

3 
2.2538590 
1.7363291 
1.36644897 
1.09507905 
0.89126832 
0.73489658 
0.61252377 
0.51496018 
0.43579840 
0.37050162 

0.00 
0.00008538 
0.00021794 
0.00095056 
0.00178459 
0.002379434 
0.002474768 
0.00189887 
0.00055688 
0.00158313 
0.00449838 

Table8: shows the approximate solutions for Eq. (4.12) 
and the eight iteration obtained from the Picard method  

In the following graphs, we compare the Picard iteration method 
1,8u  

with the 
exact solution u for linear differential equation (4.15) on the graph (7), then we 
compare between the Picard method

1,8y  with the exact solution for nonlinear 
second Bernoulli equation with fractional derivative y on the graph (8). 
 

 
  

 
Figure 7: comparing the approximate solution of 

1,8u with u  
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Figure 8: comparing the approximate solution of 
1,8y with y  

5. Conclusion 
In this article, we presented a second order nonlinear equation with 

nonlinearity of Bernoulli type with fractional order derivatives.  This study has 
been extended to the uncompleted previous work. We applied the classical Picard 
method on the proposed equation to create approximate solutions convergent to 
the exact solution. Therefore, from the above examples, we conclude that the 
results obtained by the method are in good agreement with the exact solutions. 
The study shows that the classical Picard is a reliable technique to solve Bernoulli 
differential equation involving fractional derivative. 
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