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Abstract

In this study, we present a second order nonlinear equation with nonlinearity
of Bernoulli type, which include fractional order derivatives. We consider the
numerical solution of the nonlinear equation using the Picard iteration method, the
method seeks to examine the convergence of solutions of this type of equations.
The resulting solution showed that the convergence could be increased at each
iterate level. However, as the number of iterations increases, there is a rapid rate
of convergence of the approximate solution to the analytic solution. All Results
obtained with the classical Picard method on the equation and were compared
with the exact solution.

Keywords: Fractional derivatives, Bernoulli differential equation of second order, Picard
iteration method.

1. Introduction

Linear and Nonlinear ordinary differential equations, we can find their exact
solutions in Elementary Differential Equations [7]. The exact solution and
numerical solutions of this kind of equations play an important role in physical
science and in engineering fields; therefore, there have been attempts to develop
new techniques for obtaining analytical solutions, which reasonably approximate
the exact solutions. In recent years, many research workers have paid attention to
find the solutions of linear and nonlinear differential equations by using various
methods. Among these are, the Picard iteration method, and the Adomain
decomposition method (ADM) which was introduced by G. Adomian [1- 4] to
solve linear and nonlinear differential equations, and It is well known that the
Adomian decomposition method and its modifications [17,18] are efficient
methods to solve linear and nonlinear ODEs.

Differential equations with fractional order derivative have recently proven to

be strong tools in the modeling of many physical phenomena and in various fields
of science and engineering. In [16] we constructed the approximate solutions of
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fractional derivatives of order «,and introduced simple comparison between
several methods to found the numerical approximate solutions of the fractional
derivatives. Therefore, we applied the Picard iteration method to solve nonlinear
differential equations of Bernoulli type with fractional derivatives, this study
exhibit that the Picard iteration method is very efficient for nonlinear models, and
it results give evidence that high accuracy can be achieved.

2. Preliminaries

According to the Riemann—Liouville approach to fractional calculus, the notation
of the fractional integral of order a (@ > 0) is a natural consequence of the well-
known formula (usually attributed to Cauchy) that reduces the calculation of the

M _fold primitive of a function f to a single integral of the convolution type. We
shall start with the definitions. The Cauchy formula reads:

I”f(x)zﬁfo (x —s)"1f(s)ds, x>0neN 2.1)

Definition: The Riemann-Liouville fractional order derivative of order a of the
left fractional derivative is defining by:

(LY [ - I (s)ds, 22)

where G(.)is the classical gamma function, and for a function f given on the

1
AR

interval [a,b], n —1 < a < n, n is positive integer. In particular when 0 < a <
1 then:

DEF(x): = (—d) fx( — )" f(s)d (23
oDy T — o) \dx ax s s)ds, 3)
The corresponding right Riemann-Liouville fractional derivative definition is
1 —d\" (P
44 _ | — _ \n—1l+a
xDp f (x): ITn—a)QM) L(x s) f(s)ds, (2.4)

where: n — 1 < a < n. The derivative of a constant is obtained as non-zero using
the above definitions (2.2)-(2.4) which contradict the classical derivative of the
constant, which is zero. In 1967 Prof. M.Caputo proposed a modification of the R-
L definition of fractional derivative which can overcome this shortcoming of the
R-L definition.

Definition: The Liouville-Caputo fractional-order derivative of fis defined in the
following form [8].

1
n—-a)

EDZf(x): = f;(x — )" 1f(M(s)ds ; where:n—1 < a < n.

In this definition first differentiate f(x), n-times then integrate n — a-times. The
disadvantage of this method is that differentiable n-times then the a- order
derivative will exist, wheren — 1 < a < n.

(210)



ISSUE

dpduhillg duluwilll aglell 4194

Journal of Humanitarian and Applied Seiences

Deceber 2020 2020 jpans
In [11], the author discussed existence, uniqueness, and structural stability of
solutions of nonlinear differential equations of fractional order. The following
theorems presented in [11] that are very similar to the corresponding classical
theorems known in the case of first-order equations.

Theorem 2.1 (existence). Assume that D := [a, x,] X [yéo) — €, yéo) + €] with

some x> 0and some, € > 0 and let the function f:D — R be continuous.

1
Sﬂﬁlﬂ))g}. Then, there exists a

function y: [a, x] — R solving the initial value problem D*(y — T,,_1[y])(x) =
f (x, y(x)) with initial conditions:

Furthermore, define x := min {x,

y®D(a) = yéi),i =0,1,..,m —1, where T,,,_1[y] is the Taylor polynomial of
order m — 1 for y centered at a.

Theorem 2.2 (uniqueness). Assume that D := [a, x,] X [yo(o) — €, yo(o) + €] with
some X, > 0and some e > 0. Furthermore, let the function f:D — R be
bounded on D and fulfill a Lipschitz condition with respect to the second variable;
1.e.,

|f(x,y) — f(x,z)| < L|y — z| with some constant L > 0 independent of x, y and z.

In the recent years, fractional calculus has played a very important role in various
fields such as mechanics, electricity, chemistry, biology, economics, notably
control theory, and signal and image processing. For further readings and details
on fractional calculus, we refer to the studies by the authors, [13,14,5,9,10,6.15]

3. Main Results

In this paper, we study fractional differential equations associated to the
derivative. We present the following second order nonlinear equation of Bernoulli
type with fractional derivative as the form:

12

P(x)D%y + R(x)D%y + Q(x)Dy + S(x)y = m P(x) 3'7 + R —

m*‘f@@)ﬂn (3.1a)
with initial conditions, y(a) = y,,y'(a) = y'ywhere P(x) # 0,Q(x) # 0,m > 2

and also y, andy, are not equal to zero, wheren < a <n+ 1,n is positive
integer. We rewrite eq.(3.1a) as the form:

P() (yD%y = mEoy™™) + R() (y Do = ;2 ) + @y Dy + Sy = £(x) (3.1b)

To find solution for this type of differential equations, we shall reduce the
Bernoulli’s equation (3.1a) to the linear equation by the transformation u = y1=™,

and hence (3.1a) will becomes:

1 d?u du o 3
_<P(x)E+ Q(x)&+R(x)D u>+5(x)u = f(x) (3.2)

1-m
subject to the initial conditions:

u@=y"a), v@=>0-my™ay' (@ (3.3)
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For solving (3.2) by the classical Picard iteration, we rewrite this equation as a
system of first order equations, as follow:
Letu; = u and u, = u’, then we have:

u'1 = uz , ug(@) = uq g

P( ) TG - SGuy) - P( )

where u, ¢ , U, o are the initial values conditions for the system (3.4), and the
equivalent integral equations of this system as follows:
u1 = u1 0 + fx uz(T)dT

u'p = (Q(x)uy + R(x)Duy) , uy (@) = uy (3.4)

1 (* 3.5
= 0+ 55 | 0@ = s@uds - 75 [ @y + kDwyar
In view of the Picard iteration method, we construct the following iteration
formulation:
Upn = Ugo T f; Upn-1(DdT , n=12,.. (3.6)

Uypn = Uzp + P( ) f (Ff@ — S@uy,_1)dr - Px )f (Q(@ugn_1 + R(®D Uy n_y )dt

In this paper, one numerical method presented for solving nonlinear Bernuolli
equation with fractional derivative; where the approximate solution for eq. (3.1) is

obtained from:

y = M = (1_m3/u1,i ,i=0/1,..
In particular, we will be obtaining Bernoulli equation of second order when
Q(x) =0 in eq.(3.1). Consequently, we will be repeating this method to find
numerical solution for this type of the nonlinear Bernoulli equations and the
results are perfect. (This my study unpublished yet). So, we will be previewing the
solutions for the eq.(31) in the following examples.

4. EXAMPLES

Example 1. Consider the following second order of nonlinear Bernuolli equation
with fractional derivative:

"—y' D% zyl2 4 + ( 8 %+ ! + 2x — 2)y?
y' -y Y= =t G = y 4.1)
with initial conditions: (0) = 1,(0) = 0,and @ =7, m = 2

To find solution for nonlinear differential equation, we shall reduce the
Bernoulli’s equation to the linear equation by the transformation u = y~1, hence
the equation will become:

1 <d2u du D% > @ 1 8 %)
—|————-D2u|=—-(2- x
(-D\dx dx VT x 3T
d’u du Dl 3 1 ) 8 %
dx dx u= NVIT X x 3\/Fx (42)

subject to the initial conditions: u(0) = y~1(0) = 1,u'(0) = (—1)y~2(0) =0

(212)



dyaphilly ailwilll aglell ilaa
@ Journal of Hamandtarian and Applied Seiences

Decemr 2020 2020 papunss
Consequently, we rewrite this equation as a system of first order differential
equation, as the form:

u,1 = uZ ) ul‘o = 1
/ 8 3 1 0
Uy =2———2x — x2+u, +D2uq , Uy g =
2 m 3\/; 2 1 2,0
and the equivalent integral equations of this system as follows:
X
Uy = Uy + [, ux(v)de
X 1 8 3 X 1 (4.3)
U, = U +f (2———21— TE>dT+f (u 7)+D2u T)dr
2 2,0 0 \/E 3\/; 0 2( ) 1( )
Hence, the classical Picard iteration will be taking the formula:
X
Uiy = Upg + [y Upp-1(D)dT
(4.4)

(- ge?)
2——=—27— T2 | dT
TT 3\/?

* 1
+ [ (tanr @+ D (0)
0

Upp = Uy T f
0

The results in the following tables are showing: in table (1): the first reiterations
for solution of linear differential equation with fractional derivative (4.2) which
are obtained by using Picard's method, in table (2): shows the results of the
approximate solution for second order of nonlinear Bernuolli equation with
fractional derivative (4.1), and comparing the eleventh iteration which obtained by
Picard method with the exact solution. The results showed that the Picard iteration
method is remarkably effective and performing is very easy.

Iterati ber
eration number u,
0 0
1 1
2 1 xl—x:— 32 x T
3 1053.—.
3 1o g:_ 32 x—_x_64x=_
1035447 12 945;‘:
4 {4 x?— 32):3__1‘_ 64x 7
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Table 1
x; | Exact | PI: U, lu - Uy, | Exact Pl y, |y - Vo |
u Y

0.0 1.0 0.00 0.00
0.1 1.01 1.77636x1015 (9 0.9900990099 | 1.77636 x10713
0.2 1.04 1.61204x10°' |8 0.9615384615 | 1.49047x10°12
0.3 1.09 9.4293x10!' |1 0.9174311927 | 7.93645x10!!
0.4 1.16 1.71847x10° [9 0.8620689668 | 1.27711x107°
0.5 1.25 1.64883% 107® 0.8000000106 | 1.05525%10°8
0.6 1.36 1.05295x107 |4 0.7352941746 | 5.69283x108
0.7 1.49 5.07342x107 |1 0.6711411681 | 2.28522x1077
0.8 1.64 1.98814x10% |6 0.6097568367 | 7.39196x1077
0.9 1.80999 | 6.65127x10° |6 0.5524882181 | 2.03025x10°°
1.0 1.99998 | 0.0000196372 0.5000049094 | 4.90935%10°¢

Table 2: shows the approximate solutions for Eq. (4.1)

The following Figures represent the graphical presentation of # and y , where
we compare the Picard iteration method « ,, with the exact solution ¢ for linear
differential equation (4.2) on the graph (1), then we compare between the Picard
method y; 1; with the exact solution for nonlinear Bernoulli equation of second
order y (4.1) on the graph(2). Numerical simulation shows that u; 1, and y; 14

both grow with exact solutions.
10}

8

o eeeoee EXACT SOL.
S®S® ®® CICARD ITER.

Figure 1: comparing the approximate solution of ¢ ,, with U

EXACT SOL.
= = = = PICARD ITER.

oo eeeee EXNAC
SSS S & PICARD ITER.

Figure 2: comparing the approximate solution of y,,, with

T SOL.
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Example 2. Consider the following second order of nonlinear Bernuolli
equation with fractional derivative:

12 2
" Y y y Vx 3m 1 5 3 x2 . (45
D2 vy =3 —_— [ e 7 A —
Yoty Ay = G Tt e T 2 Y
PP . 1 -7 1
with initial conditions: y (1)= 1,y '(1)= 7 y")= o’ where m = 3,a = 5

To find solution for nonlinear fractional differential equation, we shall reduce the
Bernoulli’s equation to the linear equation by transformation u = y~°, hence the
equation will becomes:

d*u N du+\/_D 1 N 37 +5 §+ (4.6)
T Tr Zu — u—4\/§ g XX x2

subject to the initial conditions: u(1) = 1,u'(1) = %, u'(1) = Z

Consequently, we rewrite this equation as a system of first order differential
equation, as the form:

Uy = uy (47)

1

Uy = \/_——x+ x2+x U —xu, — ‘/_Diul

4f

The classical Picard iteration will be taking the formula:

Uip = U T+ flx uz,n—1(T)dT (4.8)

Jz o1
Uy, —u20+f ( \/_— T+= T2+T + Uy 1 (7) — ruzjn_l(r)—TDzul,n_l(T))dr

The results in the following tables are showing: in table (3): the first reiterations
for solution of linear differential equation with fractional derivative (4.6) which
obtained by using Picard's method, in table (4): the approximate solution for
second order of nonlinear Bernuolli equation with fractional derivative (4.5)

obtained by Picard method, Vip = ul’n% ,n=0]1,.., and y = 4= . The

where
results showed that the Picard iteration method is remarkably effective and
performing is very easy.

(215)
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Iteration number

Uy

(W8]

Xi

Exact
u

PI: U, s

|u- “P1|

Exact

Y

PIL: s

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

1.0

0.95631026
0.92546586
0.90777194
0.90349766
0.91288269
0.93614229
0.97347118
1.02504658
1.09103073
1.17157287

1.0

0.95622845
0.92519479
0.90726465
0.90275036
0.91194000
0.93512403
0.97261049
1.02471547
1.09171100
1.17370699

0.0

0.000081815
0.000271064
0.000507297
0.000747297
0.000942687
0.001018260
0.000860688
0.000331106
0.000680268
0.002134117

1.0

1.022587762
1.039488762
1.049570513
1.052050249
1.046628396
1.033544228
1.013534299
0.987707152
0.957373731
0.923879533

1.0

1.022631507
1.039641025
1.049863906
1.052485603
1.047169214
1.034106790
1.013982650
0.987866713
0.957075405
0.923039219

elecleololelelelelele]

Table 4: shows the approximate solutions for Eq. (4.5)
and fifth iteration obtained from Picard iteration

In the following graphs, we compare the Picard iteration method ,, _with the

exact solution U for linear system (4.8) on the graph (3), then we compare

between the Picard method ,, s

equation with fractional derivative ¥ on the graph(4).

20
EXACT SOL.

= = = = PICARDITER.

o
wn [

3.0

e oeeee EXACT SOL.
SSS S S PICARD ITER.

Figure 3: comparing the approximate solution of ,, _ with u
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Figure 4: comparing the approximate solution of ,, _with ¥

Example 3. Consider the following second order of nonlinear Bernuolli equation

with fractional derivative:
" 2 § y’z y 4 8 5
y +y—xD2y:2——— (— —x2—2 8x—3x2)y (4.9)

with initial conditions: y(1) = E,y ‘1) =- Z,y"(l) = %, wherem = 2, a = g,
)=

2

NIW

To find a solution for nonlinear fractional differential equation, we shall reduce

: : . . : _ -1
the Bernoulli’s equation to the linear equation by transformation ¥ = ), hence

the equation will becomeS'

d’u du B 4 8
E+a—xD2u 2 + 8x + 3x? —Tx \/_ (4.10)
subject to the initial conditions: u(1) = 2, u'(1) = 5,u"(1) = 8

Consequently, the classical Picard iteration will be taking the formula:

Uiy = Uso + J Uppos (DT @.11)

le
NIU‘I

x 3 8 5 3
Upp = Uy + f (2 + 87 + 312 — —12 ——72— Uy,1(7) +x D2 u1,n—1(T)) dt
1

NN

The results in the following tables are showing: in table (5): the first
reiterations for solution of linear differential equation with fractional derivative
(4.10) which obtained by using Picard's method, in table (6): the approximate
solution for second order of nonlinear Bernuolli equation with fractional

derivative (4.9) obtained by Picard method v, = u,,’ '.n=0,1,..., where y=u"

. The results showed that the Picard iteration method is remarkably effective and
performing is very easy.
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ul.r.'
0 0
I —3-5x
5 _13_ 226 - 3y 206x 4x? 3x 4x _ 16x i_ 32x 7
= 12 63~/7 35~/ 347 2 3 3507 4 63~S7
, .
3 _ 17 4478 13x | 35% _;2x?_r:_103x'_;28x?*llx’_l6x3_
60 34657 12 315/ A7 2 354G 13dF 0 6 3547
_x'_lle%_x _64x%
12 31547 20 693r
Table5
X; Exact PI: Exact PI:
i iU, 5 |u' uPI| Vg |)" yP] |
u Yy

1.0 0.2 2.0 0 0 0 0

1.1 | 2.541 | 2.53896894 0 0 0 0

1.2 | 3.168 3.15856526 0 0 0 0

1.3 | 3.887 | 3.86244936 0 0 0 0

1.4 | 47704 | 4.65368227 0 0 0 0

1.5 | 5.625 | 5.53460852 0 0 0 0

1.6 | 6.656 | 6.50677951 0 0 0 0

1.7 | 7.803 | 7.57096136 0 0 0 0

1.8 | 9.072 | 8.72728412 0 0 0 0

1.9 | 10.469 | 9.97560204 0 0 0 0

2.0 12.0 11.3161489 0 0 0 0

In the following graphs, we compare the Picard iteration method ,, _ with the

Table 6: shows the approximate solutions for Eq. (4.9)
and the seventh iteration obtained from the Picard iteration

exact solution U for linear system (4.11) on the graph (5), then we compare

between the Picard method Vs

equation with fractional derivative ¥ on the graph (6)

14

1.6

EXACT SOL.

= = = = PICARD ITER.

1.8

with the exact solution for nonlinear Bernoulli

eeoeeoeee EXAC

T SOL.
SS®S S S PICARD ITER.

Figure 5: comparing the approximate solution of ,,, _ with u
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Figure 6: comparing the approximate solution of ), _with )

Example 4. Consider the following second order of nonlinear Bernuolli equation
with fractional derivative:
/2

" Z é ' 2 Z
y+x3D3y—y=2y——%+ x% —2x — 3

G AN

with initial conditions: y(1) = 3, y'(1) = —9, wherem = 2, a = =

To find solution for nonlinear fractional differential equation, we shall reduce the
Bernoulli’s equation to the linear equation by transformation u = y~1, hence the
equation will becomes:

d’u 2 4  du "
——+x3D3u ——=2x —x“+

2
dx dx r (%)

subject to the initial conditions : # (1) = %, u')=1

2 (4.12)

y

7
3

x (4.13)

Consequently, we rewrite this equation as a system of first order differential
equation, as the form:

ul = uz
7 2 4
u, = 2x — x? +%x§+ U, — x3D3 Uy (4.14)
3
The classical Picard iteration will be taking the formula:

Uy = U+ flx Uyp1(Ddt ;n=12,.. (4.15)

7 2 4
Upp = Uy + flx (21’ — 12 + %E)TE + Uy p_1(7) —73D3 ul,n_1(1)> dr
3

The results in the following tables are showing: in table (9): the first
reiterations for solution of linear differential equation with fractional derivative
(4.13) which obtained by using Picard's method, in table (10): the approximate
solution for second order of nonlinear Bernuolli equation with fractional
derivative. (4.12) obtained by Picard method. The results showed that the Picard
iteration method is remarkably effective and performing is very easy.

(219)
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Iteration number u
0 1
3

1 -214x

~n 1 _2x ox* . ox' _ x* 389 131x 3x 7 _ 2432 %

< 3 3 2 3 12 260r (=%)  50r(5) 4r(=-) 650T (34

3 _ 1 . x x°  x° x° 16267 _ 1341x 3.‘:;___ 131x ° - ox ¥ _

) 1s 4 3 2 60 145600(3h) 325T0(5h) 20(3h) 1000(zh) 14D (zh)

__243x _ 729x —‘
6500 (=) 104001‘(%)
Table 7

X; Exact u Exact PI:

' e |u'up1| Y Vs |y'yp1|
1.0 | 0.3333333 | 0.3333333 | 0.00 3 3 0.00
1.1 | 0.4436667 | 0.4436837 | 0.0000168 | 2.2539444 2.2538590 0.00008538
1.2 ] 0.576 0.5759277 | 0.0000723 | 1.7361111 1.7363291 0.00021794
1.3 | 0.7323333 | 0.7318239 | 0.0005094 | 1.3654984 1.36644897 0.00095056
1.4 | 0.9146667 | 0.9131761 0.0014906 | 1.0932945 1.09507905 0.00178459
1.5 ] 1.125 1.1219966 | 0.0030034 | 0.8888889 0.89126832 0.002379434
1.6 | 1.3653333 | 1.3607357 | 0.0045977 | 0.7324219 0.73489658 0.002474768
1.7 | 1.6376666 | 1.6325896 | 0.0050769 | 0.6106249 0.61252377 0.00189887
1.8 | 1.9440000 | 1.9418977 | 0.0021023 | 0.5144033 0.51496018 0.00055688
1.9 | 2.2863333 | 2.2946389 | 0.0083056 | 0.4373815 0.43579840 0.00158313
2.0 | 2.6666667 | 2.6990436 | 0.0323769 | 0.375 0.37050162 0.00449838

Table8: shows the approximate solutions for Eq. (4.12)
and the eight iteration obtained from the Picard method

In the following graphs, we compare the Picard iteration method ,,, . with the

exact solution U for linear differential equation (4.15) on the graph (7), then we
compare between the Picard method,, _ with the exact solution for nonlinear

second Bernoulli equation with fractional derivative » on the graph (8).

3.0

1.0 12 14 1.6 1.8 20
EXACT SOL.

= = = = PICARD ITER.

eeoeoeoeoee EXACT SOL.
SS9 ® & & CICARD ITER.

Figure 7: comparing the approximate solution of ,, _ with u
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e®eoeooeee PICARD ITER

Figure 8: comparing the approximate solution of ,, _with )’

5. Conclusion

In this article, we presented a second order nonlinear equation with
nonlinearity of Bernoulli type with fractional order derivatives. This study has
been extended to the uncompleted previous work. We applied the classical Picard
method on the proposed equation to create approximate solutions convergent to
the exact solution. Therefore, from the above examples, we conclude that the
results obtained by the method are in good agreement with the exact solutions.
The study shows that the classical Picard is a reliable technique to solve Bernoulli
differential equation involving fractional derivative.
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