

Differentiable and analyticFunction spaces

N. M.BEN. Youisf University of Tripoli

Abstract:

In this paper we shall prove a theorem which is very important for the structure of complete analytic vector fields, and some lemmas.

Keywords: differentiable, analytic function, analytical mapping and the class of C^{∞} differentiable functions.

المتحص في هذه الورقة سوف نثبت نظرية مهمة جدا لبنية حقول المتجهات التحليلية الكاملة، وكذلك بعض البراهين.

1- Introduction:

We know from the definition of differentiable function of class C^{∞} that we can expand it in power series .

For (real) analytic in single variable are necessary but not sufficient condition that a function be (real) , analytic that can be expanded in a power series at each point $a \in U$ where U is an open set of R^N is that to be in C^{∞} (u) if f is real analytic on U we say that $\{f \in C^{\omega}$ (u) $\}$.

A although knowledge of analytic function is helpful, since C^{ω} implies C^{∞} to know that any linear function $f(x) = \sum a_i x^i$, or polynomial $p(x^1,...,x^n)$

N variables is analytic function on $u=R^n$, the some is true for any quotient of polynomials (rational functions) if we exclude from the domain the points at which the denominator is zero.

Thus, for example a determinant is an analytic function of it's entries and, if we exclude nxn matrices of determinant zero, (which have no inverse) then each entry in the invers A^{-1} of Matrix a is an analytic and (hence C^{∞}) function of the entries in matrix A.

Mapping:

Let R^m and R^n denote two Euclidean spaces of m and n dimension, respectively. Let O and O' be open subsets, $O \subset R^m$, $O' \subset R^n$ and suppose ϕ is mapping of O in to O'.

The mapping, φ is differentiable if the coordinates y_j (\emptyset (P)) of \emptyset (p) are diffentiable (that is, indefinitely differentiable) functions of the coordinates x_i (p), $p \in 0$.

The mapping φ is called analytic if for each point peo there exists a nighbor hood U of P and n power series pj $(1 \le j \le n)$.

m variables such that $y_i(\varphi(q)) = P_i(x_1(q) - x_1(p), \dots, x_m(q) - X_m(P)),$

$$(1 \le j \le n)$$
 for $q \in U$.

A differentiable mapping $\emptyset: O$ —G' is called a diffeomorphism of O on toO' if $\varphi(O)=0'$, \emptyset is one – to- one and inverse mapping \emptyset^{-1} is differentiable.

When n = 1 it is customary to replace term mapping by term function.

An analytic function on R^m which vanishes on an open set is identically zero.

For differentiable function the situation is completely different.

In fact, if A and B are disjoint Sub sets of R^m , A compact and B closed then there exists differentiable function \emptyset which is identically 1 on A and identically 0 on B.

Example: let 0 < a < b and consider the function f on R defined by

$$f(x) = \begin{cases} exp\left(\frac{1}{x-b} - \frac{1}{x-a}\right) & if \ a < x < b \\ o & otherwise \end{cases}$$

Then f is differentiable and the same holds for the function $F(x) = \frac{\int_x^b f(t)dt}{\int_a^b f(t)dt}$

Which has value 1 for $x \le a$ and 0 for $x \ge b$.

Example: the functionΨ on R^m given by

 Ψ (x₁,...., x_m) = f (x²₁ ++ x²_m) is differentiable and has values 1 for

 $x^{2}_{1} + + x_{m}^{2} \le aand O zero for x_{1}^{2} + + x_{m}^{2} \ge b$.

let S and S' be two concentric spheres in R^m.

S' lying inside S. starting from Ψ we can by means of transfrom of R^m constarcut a differential function on R^m .

With value in interiors' and value 0 outside S.

Turning now to the sets A and B we can owing to the compactness of A, find finitely many spheres Si $(1 \le i \le n)$ such that the corresponding open balls Bi $(1 \le i \le n)$

 $i \le n$) form covering A (that is, A $\subset U_{i=1}^n$ Bi) and such that the closed ball \overline{Bi} (1 $\le i \le n$) do not intersect B.

Each sphere Si can be shrunk to concentric sphere S'_i , such that the corresponding open balls B'_i still covering of A.

Now let Ψ_i be differentiable function on R^m which is identically 1 on B'_i an identically 0 in the complement of Bi.

Then the function:

$$\Psi = 1 - (1 - \Psi_1)(1 - \Psi_2) \dots (1 - \Psi_n)$$

Is differentiable function on R^m which identically 1 on A and identically 0 onB.

Function of class C^{∞} and real analytic function let us say that f of class C^{∞} if f is of class C^q for every q. If f is of class C^{∞} and $\lim_{q\to\infty} R_q(x) = 0$, them in place of Taylor's.

Formula with remainder we may put the corresponding infinite series.

This infinite series is called the Taylor series for f(x) at x_0 .

If K is convex subset of D and $x_0 \in K$ then the following is a sufficient condition that f(x) be the sum of it's Taylor series for every $x \in k$.

Suppose that there is a positive number M whose qth.

Power bounds every qth-order partial derivative of f, namely, $\left|f_{i1,i2,\dots,iq}^{(x)}\right| \le M$ for every $x \in k$, $q=1,2,\dots$, and $1 \le i_1,\dots,i_q \le n$

Then c=m^q where $|R_q(x)| \le cn^{q/2}|h|^q$.

 $h= x-x_0$.

$$|R_q(x)| \le \frac{M^q n^{q/2} |h|^q}{q!} = \frac{B^q}{q!}$$
 Where $B = mn^{1/2} |h|$.

Since
$$\frac{B^q}{q!}$$
 as $q \longrightarrow \lim_{q \to \infty} R_q(x) = 0$ For every $x \in k$.

A function is called analytic if every $x_0 \in D$ has a neighborhood U_{xo} such that the Taylor series at to x_0 converges to f(x) for every $x \in Uxo$.

We have proved the following: Let f be of Calls c^{oo} , and Suppose that every $x_o \in D$ has a neighborhood U_{xo} in which an estimate $\left| f_{i1,i2,\dots,iq} \right| \le M^q$ holds Then f is analytic.

The positive number M may depend on X_0 and on radius of U_{xo} .

2- OUR main result

2.1 proposition the function f:iR R defend on R by

$$f(s) = \begin{cases} 0, s \le 0 \\ \exp(-1 \setminus s), s > 0 \end{cases}$$
 is a C^{∞} function.

Proof: Assume that, for some integer n the nth derivative of f is defined $f^{(n)}(s) = \begin{cases} \exp(\frac{-1}{s})pn(\frac{1}{s}) \\ 0 & \text{if } s < 0 \end{cases}$ where p_n is some polynomial if s > 0

By differentiation

$$f^{(n+1)}(s) = \begin{cases} \exp(\frac{-1}{s}) P_{n+1}(\frac{1}{s}) & \text{if } s > 0 \\ 0 & \text{if } s < 0 \end{cases}$$

To find $f^{(n+1)}(0)$ we use the fact that for any integer $N \ge 0$.

$$\lim_{S \to o+} \left\{ \frac{1}{S^N} \exp\left(\frac{-1}{S}\right) \right\} = 0$$

it follows that

$$\lim_{s \to o+} \left(\frac{f^n(s) - f^n(0)}{s} \right) = \lim_{s \to o+} \left\{ \frac{1}{s} \exp\left(\frac{-1}{s} \right) pn\left(\frac{1}{s} \right) \right\} = 0$$

$$\lim_{s \to 0^{-}} \left(\frac{f^{n}(s) - f^{n}(0)}{s} \right) = \lim_{s \to 0^{-}} \left\{ \frac{0}{s} \right\} = 0$$

This implies that $f^{(n+1)}(0)=0$.

Our original assumption is true when n=0 and so, by induction , it is true for any positive integer $\mathbf{n.f}$ is there for a C^{∞} function. .

2.2 lemma:

Let
$$D = E^1$$
 and let $f(x) = \begin{cases} \exp\left(\frac{-1}{x^2}\right) & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$

Show that, $f \in C^{\infty}(E^1)$?

Proof: let us show that this function is of class C^{∞} and $f^q(0)=0$ for every $q=1,2,\ldots,0$ for $x\neq 0$, the derivatives $f^q(x)$ can be compute by elementary calculus, and each f^q continuous on E^1 - $\{0\}$.

It is at the point o where f must be examined. Now

* $\lim_{k \to +\infty} (u^k \exp(-u)) = 0$ for each k=1,2,... a Fact that we prove immediately below.

If x < 0, then f(x) = f'(x) = f''(x) = 0 = 0...=0.

With k = 0,
$$\exp\left(\frac{-1}{x^2}\right) \rightarrow 0$$
 as $x \rightarrow o^+$

Since
$$f(0) = 0$$
, f is continues. If $x > 0$, $f'(x) = \frac{2}{x^3} \exp(\frac{-1}{x^2}) = 2x \cdot \frac{1}{x^4} \exp(\frac{-1}{x^2})$

With k=2,
$$f'(x) \rightarrow 0$$
 as $x \rightarrow 0^+$

There for $\lim_{x\to 0} f'(x) = 0$, f'(0) = 0 and f is of class c^1 .

For each (q=2,3,...,), $f^q(x)$ is a polynomial in 1/x times $\exp(-1/x^2)$

For x > 0.

Hence
$$\lim_{x\to 0} f^q(x) = 0$$
, by induction on q , $f^q(0) = 0$

And $f \in C^q$ for every q, thus $f \in C^\infty$. If we expand f by Taylor's formula about O, then $f(x) = R_q(x)$ for every x.

If x > 0 the remaider $R_q(x)$ does not tend to O as $q \to \infty$. Hence f is not an analytic function.

*
$$\lim_{k\to\infty} u^k \exp(-u) = 0$$
 for each $k = 0, 1, 2, \dots$ for each $u < 0$ let $(u) = u^{-k} \exp u$, then $\Psi'(u) = (u - k) u^{-k-1} \exp u$.

 $\Psi'' = [u^2 - 2ku + k(k+1)]u^{-k-2}$ exp u The express in brackets has minimum when u = k and is positive there.

Hence $\Psi''(u) > 0$ for all u > 0 Let us apply Taylor's formula to Ψ , with q=2: $\Psi(u) = \Psi(u_0) + \Psi'(u_0)(u-u_0) + \frac{1}{2}\Psi''(v)(u-u_0)^2$ with v between u and u_0 Since $\Psi''(u) > 0$.

 $\Psi(u) \ge \Psi(u_0) + \Psi'(u_0)$ (u-u₀) . If $u_0 > k$, then $\Psi'(u_0) > 0$ and the righthand side tends to $+\infty$ as $u \to \infty$.

Hence $\Psi(u) \to +\infty$ and $\frac{1}{\Psi(u)} \to 0$ as $u \to +\infty$. Which complete the proof.

2.3 Theorem. If $P: IR^N \to IR$ is a polynomial function and $0 \neq \Phi$:

 $IR^k \rightarrow IR$ is an affine function such that P(q) = 0 for the points q of the hyper plane $\{q \in IR^N : \Phi(q) = 0\}$ then Φ is a divisor of P in the sense that $P = \Phi Q$ with some (unique) polynomial $Q : IR^N \rightarrow IR$.

Proof. Trivially, any two hyperplanes are affine images of each other.

In particular there is a one-to-one affine (i.e linear + constant) map- ping $A: IR^N \leftrightarrow IR^N$.such that $\{q \in IR^N : \Phi(q) = 0\} = A(\{q \in IR^N : X_1(q) = 0\})$. Then R:= Po A is a polynomial function such

that R(q)=0 for the points of the hyper plane $\{q \in IR^N: x_1(q) = 0\}$.

We can write $R = \sum_{k_1, \ldots, k_N=0}^d \alpha_{K_1, \ldots, K_N} x_1^{k_1} \ldots x_N^{k_N}$ with a suitable finite family of coefficients $\alpha_{K_1, \ldots, K_N}$ By the Taylor formula, $\alpha_{K_1, \ldots, K_N} =$

$$\frac{\partial^{k_1+\cdots k_N}}{\partial x_1^{k_1,\dots,k_N}} \Big|_{\substack{R. \\ X_1=\cdots,\dots=XN=0}}^{\substack{R. \\ X_1=\cdots,\dots,K_N=0}} \int_{\mathbb{R}^n} for \ k_1 > 0, since$$

R vanishes for $x_1 = 0$. This means that $R = X_1 R_0$ with the polynomial Ro $:= \sum_{k=1}^d \sum_$

That is Φ is the sum of a linear functional with a constant.

Applied for the polynomial function Φ of degree d=1 in place of R, we see that Φ o A= αx_1 for some constant (polynomial of degree 0) $\alpha \neq 0$.

That is $\Phi = \alpha x_1$ o A⁻¹. Therefore

P = Ro A⁻¹ = [x₁ R₀] o A⁻¹ = (x₁ o A⁻¹)(R₀ o A-1) = $\Phi(\frac{1}{\alpha}R_0oA^{-1})$. a Since the inverse of an affine mapping is affine as well, the function

Q:= $(\frac{1}{\alpha}R_{00} A^{-1})$. is a polynomial which suits the statement of the theorem.

2.4 Theorem: Assume that $G \subset R^N$ is an open connected set such that $G \cap E_0 \neq \emptyset$, And let $\Phi \colon G \to R$ be an analytic function such that $\Phi (x) = 0$ for all $x_{\in} G \cap E_{0,}$. Then $\Phi (x) = x_1 \Psi(x)$ for some analytic function $\Psi \colon G \to R$ where $x_1 = \langle x.e \rangle$ and $x = (x_1, x_2, ..., x_N) \in R_N$.

proof: let $E_0 = \{ p \in \mathbb{R}^N : x_1(p) = 0 \}$, be a hyper-plane $\Phi(p) = 0$ for $p \in E_0$.

$$\phi(p) = \sum_{k=1}^{\infty}, \sum_{n_1 + \dots + n_N = k} a_{n_1 \dots n_N} x_1^{n_1}(p) \dots x_N^{n_N}(p)$$

$$p \in E_o \Longrightarrow X_1(p) = 0, x_1^{n_1}(p)...x_N^{n_N}(p) = 0, \text{ if } n_1 > 0$$

$$0 = \Phi(p) = \sum_{k=1}^{\infty} \sum_{n2+\dots+n_N=k} a_{n_0 n_2 \dots n_N} X_2^{n_2}(p) \dots X_N^{n_N}(p),$$

By assumption.

 $P=\xi_2e_2+\cdots+\xi_Ne_N\in E_0$, ξ_2 , ..., $\xi_N\in R$, arbitrary.

$$0 = \Phi(p) = \sum_{n_2 + \dots + n_N = k} a_0 \,_{n_2 \dots n_N} \xi_2^{n_2} \dots \xi_N^{n_N}$$

$$a_{0\ n_{2}\dots n_{N}} = \frac{\partial^{n_{2}+\dots+n_{N}} \Phi(\xi_{2}e_{2}+\dots+\xi_{N}e_{2})}{\partial^{n_{2}}_{x_{2}}\dots\partial^{n_{N}}_{x_{N}}} \frac{1}{n_{2}!n_{N}!} = 0. \quad a_{n_{2}\dots n_{N}} = 0, \forall n_{2},\dots,n_{N}.$$

$$\Phi(p) = \sum_{k=1}^{\infty} \sum_{\substack{n_1 + \dots + n_N = k \\ n_1 > 0}} a_{n_1 n_2 \dots n_N} x_1^{n_1}(p)$$

$$= x_1(p) \sum_{k=1}^{\infty} \sum_{\substack{n_1 + \dots + n_N = k \\ n_1 > 0}} a_{n_1 n_2 \dots n_N} X_1^{n_1^{-1}}(p) \dots X_N^{n_N}(p)$$

$$= X_1(p) \Psi(p).$$

$$\Psi(p) = \sum_{I=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n_2 + \dots + n_N = I}^{\infty} a_{n_1 n_1 \dots n_N} X_1^m(p) \dots X_N^{n_N}(p) with$$

$$m = n_1 - 1$$
 and $L = k - 1$

Remark:- we know that the function

$$\varphi(t) = \begin{cases} e^{-1/t} & \text{if } t > 0\\ 0 & \text{if } t \le 0 \end{cases}$$

Is infinitely differentiable, since also the function

$$R^m \rightarrow R$$
, $x \rightarrow 1 - |x|^2$

Is smooth(i.e., infinitely differentiable), it follows that the same is true for the composition of both functions, more precisely we have : c>0 and

$$\omega(x) = \begin{cases} ce^{1/\left(|x|^2 - 1\right)} & if |x| < 1\\ 0 & if |x| \ge 1 \end{cases}$$

Then $\omega \in C^{\infty}(\mathbb{R}^m, \mathbb{R}), \omega \geq 0$ and

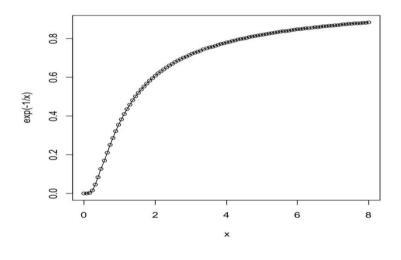
$$supp(\omega) = \overline{\{y \in R^m | \omega(y) \neq 0\}} = \bar{B}^m$$

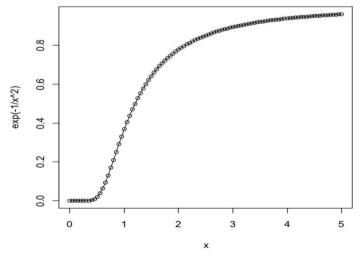
Now we choose

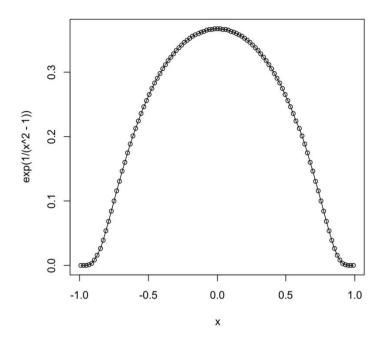
$$C = \int_{-1}^{1} e^{1/(|x|^2 - 1)} dx \text{ and for every } \epsilon > 0 \text{ we set } \omega_{\epsilon}(x) = \epsilon^{-m} \omega\left(\frac{x}{\epsilon}\right), \forall x \in \mathbb{R}^m.$$

Then evidently we have

$$\omega_{\epsilon} \in C^{\infty}(R^m, R), \omega_{\epsilon} \ge 0. \ supp (\omega_{\epsilon}) = \epsilon \bar{B}^m,$$
$$\omega_{\epsilon}(-x) = \omega_{\epsilon}(x), \quad \forall \ x \in R^m$$
$$\int_{R^m} \omega_{\epsilon}(x) dx = 1.$$







Reference

- 1. N. M. BEN Yousif, Complete polynomial vector fields on Simplexes Electronic Journal of qualitative Theory of differntial Equation No.5 2004:. pp. (1-10).
- 2. ROBERT.J.walker.Algebraic curues, Princeton-New Jersey 1950.
- 3. Confor mal mapping, Zeer Niehari United States of America, Dover Publication. New York, NY 10014.
- 4. 4. K isaku Yosi da, Function analysis springer-verlag, Berlin Heidelberg New York 1980. 57
- 5. Tucory and Special Functions, Willand Miller, Jr. New Yorhand London, 1968.
- 6. Kosaku Yosida, Function analysis / 1980.
- 7. Real and Complex Analysis./1987.
- 8. an introduction to differentiable Manifolds and Riemannian Geometry / 1975.