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Abstract  

In this article, we are discussing the numerical solution of Brnoulli's equation 
with  fractional derivatives subject to initial value problems by applying 4th order 
Runge-Kutta, modified Runge-Kutta and Runge-Kutta Mersian methods. Here the 
solutions of some numerical examples have been obtained with the help of 
mathematica program as well as we determined the exact analytic solutions.  
Keywords: Bernoulli equation with fractional derivatives, Initial value problem, Runge-
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 الملخص
القيمة الأولية  لمسائلالخاضعة  في هذه المقالة، ناقشنا الحل العددي لمعادلة برنولي مع المشتقات الكسرية

 Runge-Kutta و Runge-Kutta من الدرجة الرابعة و Runge-Kutta طرقمن خلال تطبيق 
Mersian المعدلة. هنا تم الحصول على حلول لبعض الأمثلة العددية بمساعدة برنامج mathematica 

 .وكذلك قمنا بتحديد الحلول التحليلية الدقيقة
كوتا ، طرق -: معادلة برنولي مع المشتقات الكسرية، مشكلة القيمة الأولية ، طرق رونجالكلمات المفتاحية

 .كوتا ميرسيان-كوتا المعدلة وطرق رونج-رونج
1. Introduction  

The differential equations are the most important mathematical model of 
physical phenomenon. Many applications of differential equations, particularly 
ordinary differential equations of different orders, can be found in the 
mathematical modeling of real life problems. Most of models of these problems 
formulated by means of these equations are so complicated to determine the exact 
solution and one of two approaches is taken to approximate solution. Therefore, 
many theoretical and numerical studies dealing with the solution of such 
differential equations of different order have appeared in the literature. Thus, there 
are many analytical and numerical methods for solving some types of the 
differential equations. Now, the fractional differential equations is a 
generalization of ordinary differential equations, and differential equations with 
fractional order derivative have recently proven to be strong tools in the modeling 
of many physical phenomena and in various fields of science and engineering. 
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(see [1],[5],[7]) There has been a significant development in ordinary and partial 
fractional differential equations with fractional order in recent years.  
 Many researchers developed the family of Runge-Kutta methods for solving first, 
second and third order ordinary differential equations, For example [18] has 
developed a singly diagonally implicit Runge-Kutta-Nyström method for second-
order ordinary differential equations with periodical solutions. Many applications 
have been solved base Runge Kutta methods. [7] Solved discrete-time model 
representation for biochemical pathway systems based on Runge–Kutta method. 
In [19], derived some efficient methods for solving second order ordinary 
differential equations, which have oscillating solutions, furthermore, it is essential 
to consider the phase-lag and the dissipation error that result from comparing. 
Theordinary differential equation can be solve by using multistep methods, this 
methods it would be more efficient in case higher order ODEs can be solved using 
special numerical methods, (see [4,11-13]). 
In ([2], [3]), Alonso-Mallo and Cano have developed and analyzed a technique 
which can be used in Runge-Kutta or Rosenbrock methods to avoid such order 
reduction. Such methods provide strong reductions of computational cost with 
respect to other classical, explicit or implicit methods.The authors in [10] studied 
unconditional stability properties of explicit exponential Runge Kutta methods 
when they are applied to semi-linear systems of ODEs characterized by a stiff 
linear systems f stiff nonlinear part.  

2. Preliminary Material on Fractional Calculus 
In this section, some we review of the helpful definitions in fractional calculus, 
and we recall the properties that we will use in the subsequent sections. For a 
more comprehensive introduction to this subject, the reader can be the see 
referred: [6, 14-17]. 
We consider the Riemann–Liouville (RL) integral for a function

1
0( ) ([ , ]);y x L x T�  as usual, 1L is the set of Lebesgue integrable functions, the RL 

fractional integral of order 0a !  and origin at 0x is defined as: 

0
0

11( ) : ( ) ( ) (2.1)
( )

x

x x
J y x x s y sD D

D
� �

* ³  

Indeed, the particular case for the Riemann–Liouville integral (2.1) when 0a  , 
the left inverse of 

0
( )xJ y xD is the Riemann–Liouville fractional derivative: 

0 0
0

11ˆ ( ) : ( ) ( ) ( ) (2.2)
( )

m
xm m m

x x x

dD y x D J y x x s y s
m dx

D D D

D
� � �§ ·  �¨ ¸* � © ¹ ³  

where m D ª º« » is the smallest integer greater or equal toD . 
An alternative definition of the fractional derivative, obtained after interchanging 
differentiation and integration in Equation (2.2), is the so called Caputo 
derivative, which, for a sufficiently differentiable function, that is to say for 

0([ , ])m my A x T� , where my is absolutely continuous given by: 
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0 0

1 ( )1( ) : ( ) ( ) ( ) (2.3)
( )

xm m m m
x x a

D y x J D y x x s y s ds
m

D D D

D
� � �  �

* � ³  

The left inverse of the Riemann–Liouville integral is 
0

( )xD y xD , that is

0 0x xD J y yD D  , but not its right inverse, see [6]: 

0 0

1
0( ) [ , ]( ) (2.4)m

x xJ D y y x T y x xD D � �  
where 1

0[ , ]( )mT y x x� is the Taylor polynomial of degree 1m � for the function
( )y x centered at 0x , that is: 

1
1 0

0 0
0

( )[ , ]( ) ( )
!

m
m k

k

x xT y x x y x
k

�
�

 

�
 ¦  

Now by deriving both sides of Equation (2.4) in the Riemann–Liouville, it is 
probable to observe that: 

0 0

1
0

ˆ( ) ( ) [ , ]( ) (2.5)m
x xD y x D y x T y x xD D �ª º �¬ ¼  

Consequently, we have: 

0 0

1
0

0
0

( )ˆ ( ) ( ) ( ) (2.6)
( 1)

km
k

x x
k

x xD y x D y x y x
k

D
D D

D

��

 

�
 �

* � �¦  

Observe that the above relationship it has special case when 0 1D� � , so (2.6) 
becomes: 

0 0

0
0

( )ˆ ( ) ( ) ( )
(1 )x x

x xD y x D y x y x
D

D D

D

��
 �

* �
 

The initial value problem for Fractional differential equation (or a system of 
FDEs) with Caputo’s derivative can be formulated as: 

0

(1) ( 1) ( 1)
0 0 0 0 0 0

( ) ( , ( )) (2.7)

( ) , '( ) ,..., ( )
x

m m

D y x f x y x

y x y y x y y x y

D

� �

 

   
 

where ( , ( ))f x y x is assumed to be continuous and (1) ( 1)
0 0 0, ,..., my y y �  are the 

values of the derivatives at 0x . The application to both sides of Equation (2.6) of 
the Riemann–Liouville integral

0xJ D , together with Equation (2.3),leads to the 
reformulation of the fractional differential equations in terms of the weakly-
singular Volterra integral equation: 

0

1 1
0

1( ) [ , ]( ) ( ) ( , ( )) (2.8)
( )

xm

x
y x T y x x x s f s y s dsD

D
� � � �

* ³  

The integral Formula is used in the theoretical and numerical results and available 
for this class of Volterra integral equations in order to study and solve fractional 
differential equations, see [6]. The existence and uniqueness of solution to 
fractional order ordinary and delay differential equations discussed by Syed 
Abbas[20], and shown the existence of the solutions of the differential equations: 
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0

( ) ( , ( ))

(0) ; 0 1, [0, ]

d x t g t x t
dt

x x t T

D

D

D

 

 � � �

 

and  
( ) ( , ( ), ( )); [0, ]

( ) ( ); [ ,0]; 0 1

d x t f t x t x t t T
dt

x t t t

D

D W

I W D

 � �

 � � � �
 

under suitable conditions on ,g f and ( )tI . 
3. Numerical Methods 

In1900, C. Runge and M. W. Kutta were developed the classical 4th order 
Runge-Kutta techniques. Then after that, this method took a major role in the 
study of iterative methods based on explicit and implicit, which applied to solve 
ordinary differential equations. The Runge-Kutta method is numerical method 
used to solve a system of ODEs with suitable initial conditions.In [21] introduced 
a general formula of Runge-Kutta method in order four with a free parameter. The 
authors constructed the modified Runge-Kutta method and showed that this 
method preserves the order of accuracy of the original one (see [8]). 
Now, consider the initial value problem:  

0 0'( ) ( , ( )); ( ) (3.1)y x f x y x y x y   
Define h to be the time step size and 0ix x ih � . So, we need some definitions: 
Firstly, the formula for the fourth orders Runge-Kutta method for initial value 
problem (3.1) is given by: 

1

1
2

2
3

4 3

1 2 3 4
1

( , )

( , )
2 2

( , ) (3.2)
2 2

( , )
( 2 2 ) ; 0,1,2,....

6

i i

i i

i i

i i

i i

k hf x y
khk hf x y

khk hf x y

k hf x h y k
k k k ky y i�

 

 � �

 � �

 � �

� � �
 �  

 

Secondly, the formula for the modified Runge-Kutta method for initial value 
problem (3.1) is given by: 

1

1
2

2
3

4 3

5 1 2 3 4

( , )

( , )
2 2

( , ) (3.3)
2 2

( , )
3 2( , (5 7 13 ))
4 32

i i

i i

i i

i i

i i

k hf x y
khk hf x y

khk hf x y

k hf x h y k

k hf x h y k k k k

 

 � �

 � �
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 � � � � �
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Then an approximation to the solution of initial value problem is made using higher 
order 
Runge-Kutta method of order 4: 

1 1 2 3 5
1 ( 2 2 ); 0,1,2,....
6i iy y k k k k i�  � � � �   

The local truncation error at each step can be estimated using the following 
relation: 

1 2 3 4 5
2 ( 3 3 3 8 )
3r
hE k k k k k � � � � �  

Thirdly, the improvement version of classical Runge-Kutta method for IVP (3.1) 
which called Runge-Kutta Mersion method with the global error 4( )O h , it can be 
written as the form (see[9]): 

1 1 4 5
1 ( 4 ); 0,1,2,....
6i iy y k k k i�  � � �  

 
where 1 2 3 4 5, , , ,k k k k k  are given by: 

1

1
2

1 2
3

1 2
4

5 1 3 4

( , )

( , ) (3.4)
3 2

( )( , )
3 6

( )( , )
2 8

1( , ( 3 4 ))
2

i i

i i

i i

i i

i i

k hf x y
khk hf x y

k khk hf x y

k khk hf x y

k hf x h y k k k

 

 � �

�
 � �

�
 � �

 � � � �

 

with the local truncation error at each step can be using by the following formula : 

1 3 4 5
1 (2 9 8 )
3rE k k k k � � �  

4. Main Results 
In this section, we present a study on the numerical solution of initial value 

problem for second order nonlinear equations of Bernoulli type with fractional 
derivative [22], which can be written in the form: 

2
2 ' ( )( ) ( ) ( ) ( ) ( ) ( ) (4.1)

(1 )
my R xP x D y R x D y Q x Dy S x y m P x y f x y

y x
D

DD
� � �  � �

* �
subject to following initial condition:

1 1
0 0 0( ) , ( ) , ( ) ,...,y a y D y a D y D y a D yD D D D� �   

2 2 2 2
0 0( ) , ( )D y a D y D y a D yD D� �  where: ( ) 0, ( ) 0, 2P x Q x mz z t and also

0 0, 'y y  are not equal to zero, where1 2Dd d .
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To find solution for this type of differential equations, we shall reduce the 
Bernoulli’s equation (4.1) to the linear equation by the transformation 1 mu y � , 
and hence (4.1) will becomes as ( see[22]):  

2

2

1 ( ) ( ) ( ) ( ) ( ) (4.2)
1

d u duP x R x D u Q x S x u f x
m dxdx

D§ ·
� � �  ¨ ¸� © ¹

 

subject to the initial conditions  

� � � �
� � � �

1 1 1 1 1

2 2 1 2 2 1

( ) ( ), ( ) ( ) , ( ) ( ) , ...,

( ) ( ) , ( ) ( ) (4.3)

m m m

m m

u a y a D u a D y a D u a D y a

D u a D y a D u a D y a

D D D D

D D

� � � � �

� � � �

   

  

 

To find numerical solutions for initial value problem (4.2),(4,3) by the 4th Runge-
Kutta method, modified Runge-Kutta method  and Runge-Kutta Mersion method , 
we firstly rewrite this problem as system of ordinary differential equations of 
fractional derivatives with initial values, as follow: Let 1u u hence we have: 

 
Consequently, we will apply the fourth order Runge-Kutta method for this system 
of fractional differential equations, as the follows: 
 

1 1, 2, 3, ,

31 111 21
2 1, 2, 3, ,

32 212 22
3 1, 2, 3, ,

4 1, 13 2, 23 3, 33

( , , , ,..., )

( , , , , ..., ) (4.4)
2 2 2 2 2

( , , , , ..., )
2 2 2 2 2

( , , , , ...,

j j i i i i N i

N
j j i i i i N i

N
j j i i i i N i

j j i i i i

k hf x u u u u
k kk khk hf x u u u u

k kk khk hf x u u u u

k hf x h u k u k u k

 

 � � � � �

 � � � � �

 � � � � , 3 )N i Nu k�

 
Consequently, we compensate 1 2 3 4, , , ; 1,2,...,j j j jk k k k j N in the following 
iterations: 

� �

1 2 1

2 3 2

1
3 4 3

21
1 2

, ( ) ( )

, ( ) ( )

, ( ) ( ) (4.3)

1 1( ) ( ) ( ) ( ) , ( ) ( )
( ) ( )N N

D u u u a u a
D u u u a D u a

D u u u a D u a

dumD u f x S x u R x u Q x u a D u a
P x P x dx

D

D D

D D

D

�

  

  

  

� § · � � �  ¨ ¸
© ¹
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� �

� �

� �

� �

1, 1 1, 11 12 13 14

2, 1 2, 21 22 23 24

3, 1 3, 31 32 33 34

, 1 , 1 2 3 4

1 2 2 ; 0,1,2,...
6
1 2 2
6
1 2 2 (4.5)
6

1 2 2
6

i i

i i

i i

N i N i N N N N

u u k k k k i

u u k k k k

u u k k k k

u u k k k k

�

�

�

�

 � � � �  

 � � � �

 � � � �

 � � � �

 
Secondly, we find approximate solution for initial value problem (4.2) , (4.3) by 
applying the modified Runge-Kutta method is given by:  

5 1, 1 2, 2 3, 3 ,
3( , , , , ..., ) (4.6)
4j j i i i i N i Nk hf x h u u u u � �) �) �) �)  

where: 

� �1 2 3 4
2 5 7 13 , 1,2,..., (4.7)

32j j j j jk k k k j N)  � � �   

Then an approximation to the solution of initial value problem is made using higher 
order 
Runge-Kutta method of order four: 

� �

� �

� �

� �

1, 1 1, 11 12 13 15

2, 1 2, 21 22 23 25

3, 1 3, 31 32 33 35

, 1 , 1 2 3 5

1 2 2 ; 0,1,2,...
6
1 2 2 (4.8)
6
1 2 2
6

1 2 2
6

i i

i i

i i

N i N i N N N N

u u k k k k i

u u k k k k

u u k k k k

u u k k k k

�

�

�

�

 � � � �  

 � � � �

 � � � �

 � � � �

 
Thirdly, the Runge-Kutta Mersion method for system of fractional differential 
equations (4.3), it can be written as the form: 

� �, 1 , 1 4 5
1 4 ; 0,1,2,... ; 1,2,..., (4.9)
6j i j i j j ju u k k k i j N�  � � �   

 
 where: 1 2 3 4 5, , , , ; 1,2,...,j j j j jk k k k k j N are taken the formula: 
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where: 

� �1 3 4
1 3 4 , 1,2,..., (4.11)
2j j j jk k k j N)  � �   

5. Illustrative Examples 
In this section, we are applying the methods presented in Section 4 to solve the 

following examples and verify that these numerical methods converge to the exact 
solution quickly or not, and calculate the numerical solutions and errors. 
Example 1.  Consider the second order of nonlinear Bernuolli equation with 

fractional derivative: 
31

2 2

2
2 2' 1 82 2 2 (5.1)

3
y yD y D y Dy x x y
y x xS S S

§ ·
� �  � � � � �¨ ¸¨ ¸

© ¹
 

with initial conditions: 
31

2 2
1 5 9 1(1) , (1) , (1) , '(1)
2 212 8

y D y D y y
S S

� � �
     

The exact solution is: 2

1
1

y
x

 
�

.To finds solution for nonlinear differential 

equation (5.1), first, we shall reduce the Bernoulli equation to the linear equation 
by the transformation 1u y � , and hence the equation will become to: 

31
2 2

2

2

1 82 2 (5.2)
3

d u du D u x x
dx dx xS S

� �  � � �  

subject to the initial conditions:
31 11 72 2(1) 2, (1) , (1) , '(1) 2

3 2
u D u D u u

S S
     

Now; let 1u u , and after that we applying Runge-Kutta method (4.5), modified 
Runge-Kutta method (4.8) and Runge kutta Merson method (4.9) for the 
following system: 

1 1, 2, 3, ,

31 111 21
2 1, 2, 3, ,

31 32 1 211 12 21 22
3 1, 2, 3, ,

11 13
4 1,

( , , , ,..., ) ;

( , , , , ..., ) (4.10)
3 2 2 2 2

( , , , , ..., )
3 6 6 6 6

( ,
2

j j i i i i N i

N
j j i i i i N i

N N
j j i i i i N i

j j i i

k hf x u u u u
k kk khk hf x u u u u

k k k kk k k khk hf x u u u u

k khk hf x u

 

 � � � � �

� �� �
 � � � � �

�
 � � 21 23 31 33 1 3

2, 3, ,

5 1, 1 2, 2 3, 3 ,

, , , ..., )
8 8 8 8

( , , , , ..., )

N N
i i N i

j j i i i i N i N

k k k k k k
u u u

k hf x h u u u u

� � �
� � �

 � �) �) �) �)
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1
2

1
2

1
2

3
2

1 2 1,0

2 3 2,0

3 4 3,0 4,0

1
2

4 2 3

, (1) 2
11, (1)

3
7, (1) 2, (1) (5.3)

2
1 82 2

3

D u u u

D u u u

D u u u u

D u x x u u
x

S

S

S S

  

  

   

 � � � � �

 

Table 1: Comparison of the exact solution and numerical solutions by 4th order 
Runge- Kutta method modified Runge kutta method and Runge kutta Mersion 
method, which is displayed in Fig. 1 for the step size 0.1h  .   

𝒙𝒊 Exact u  
RK MRK RKM 

 

Error with 
respect  to 
RK 

Error with 
respect to  
MRK 

Error with 
respect to 
RKM 

1.0 2.00 2.00 2.00 2.00 0.00 0.00 0.00 
1.1 2.21 2.21721 2.18996 2.18267 0.00720696 0.0200392 0.0273263 
1.2 2.44 2.45651 2.39785 2.3816 0.0165054 0.04221529 0.0584044 
1.3 2.69 2.72017 2.6255 2.59831 0.0301719 0.0645013 0.0916943 
1.4 2.96 3.01069 2.87491 2.83445 0.0550689 0.0850928 0.125548 
1.5 3.25 3.33075 3.14822 3.09179 0.0807521 0.1017788 0.158213 
1.6 3.56 3.68328 3.44776 3.37217 0.123281 0.11224 0.187831 
1.7 3.89 4.07143 3.77602 3.67756 0.181433 0.113982 0.212443 
1.8 4.24 4.49862 13569.4  4.01002 0.258623 0.104308 0.229982 
1.9 4.61 4.96855 4.5297 4.37173 0.3585547 0.0803039 0.238272 
2.0 5.00 5.48522 4.9612 4.76498 0.485218 0.0388009 0.235024 
Table 1 

 
Fig. 1.  Comparing Exact solution of ( )u x with Runge-Kutta techniquesfor 1

2D   
Example 2.  Consider the second order of nonlinear Bernuolli equation with 

fractional derivative: 
3 3 5
2 2 2

2
2 2 2' 4 82 2 8 3 (5.4)

2
y yD y x D y Dy x x x x y
y xS S S

§ ·
� �  � � � � � �¨ ¸

© ¹
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 The exact solution for this problem is given by: 2 3

1y
x x

 
�

, with initial 

conditions:
1
2

1 29 5(1) , (1) , '(1) ,
2 430

y D y y
S

� �
   

3
2

13(1) ,
4

D y
S

�
 

17''(1)
4

y  . 

To find approximate solution for nonlinearfractional differential equation, we 
shall reduce this problem to the linear equation firstly and we applying 
transformation 1u y � , hence the equation (5.4) will becomes: 

3 3 5
2 2 2

2
2

2

4 82 8 3 (5.5)d u dux D u x x x x
dx dx S S

� �  � � � �

 

subject to the initial conditions:
31

2 2
88 12(1) 2, (1) , '(1) 5, (1)

15
u D u u D u

S S
    . 

Now, let 1u u , therefore we applying 4th order  Runge-Kutta method (4.5), 
modified Runge Kutta method (4.8) and Runge Kutta Mersion method (4.9) for 
the following system: 

1 1 1
2 2 2

3 5
2 2

1 2 2 3 3 4

1
22

4 3 4

1,0 2,0 3,0 4,0

, , ,

4 82 8 3 (5.6)

88 12(1) 2, (1) , (1) 5, (1)
15

D u u D u u D u u

D u x x x x u x u

u u u u

S S

S S

   

 � � � � � �

    

 

Table 2: Comparison of the exact solution and numerical solutions by 4th order 
Runge- Kutta method modified Runge kutta method and Runge kutta Mersion 
method, which is displayed in Fig. 2 for the step size ℎ =  0.1.   

𝒙𝒊 Exact u  
RK MRK RKM 

 

Error with 
 respect to RK 

Error with 
 respect to 
MRK 

Error with  
respect to 
RKM 

1.0 2.00 2.00 2.00 2.00 0.00 0.00 0.00 
1.1 2.541 2.35715 2.33661 2.31192 0.183847 0.204393 0.229082 
1.2 3.168 2.77156 2.73404 2.67364 0.396439 0.433956 0.49436 
1.3 3.887 3.25129 3.20489 3.09392 0.63571 0.6822108 0.793084 
1.4 4.704 3.80536 3.76472 3.58327 0.898644 0.939281 1.12073 
1.5 5.625 4.44382 4.43289 4.15442 1.18118 1.19211 1.47058 
1.6 6.656 5.17786 5.23363 4.82274 1.47814 1.42237 1.83326 
1.7 7.803 6.01991 6.19751 5.60697 1.78309 1.60549 2.19603 
1.8 9.072 6.98371 7.36352 6.53007 2.0889 1.70848 2.54193 
1.9 10.469 8.08451 8.78211 .620467  2.38449 1.68689 2.84854 
2.0 12.0 9.33915 10.5199 8.91376 2.66085 1.48012 3.08624 
Table 2 
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3
2D  Kutta techniquesfor -with Runge( )u xComparing Exact solution of Fig. 2.  

Example 3.  Consider the second order of nonlinear Bernuolli equation with 
fractional derivative: 

31
2 2

2 2
2 31 ' 3 1 53 (5.7)

2 2 2 12 12 22 8
y y x xD y x Dy D y y x x y
y x x

S S§ ·
� � �  � � � � � �¨ ¸¨ ¸

© ¹

with initial conditions:
1 7(1) 1, '(1) , ''(1)

4 16
y y y� �

   . 

The exact solution is:
3
22

1

2
y

x x x
 

� � �
. Therefore, to find approximate solution 

for nonlinear differential equation (5.7), we shall reduce the Bernoulli’s equation 
to the linear equation by the transformation 2u y � , hence the equation will 
becomes:  

31
2 2

2
2

2

1 3 5 (5.8)
2 6 64

d u dux D u u x x x x
dxdx x

S S
� � �  � � � �

 

subject to the initial conditions: 8 31 2(1) 1, (1)
43

u D u S
S

  � , 1'(1)
2

u �
 ,

2 33 2 (1)
4

D u S
S

 � . 

Consequently, we applying Rune Kutta method (RK), modified Rune Kutta 
(MRK) and Runge kutta Merson method (RKM) for the following system: 
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1
2

1
2

1
2

3
21

2

1 2 1,0

2 3 2,0

3 4 3,0 4,0

2
4 1 2 3

, (1) 1

8 3, (1) (5.9)
43

1 2 3, (1) , (1)
2 4

1 3 5
6 6 24

D u u u

D u u u

D u u u u

x xD u x x u u xu
x

p
p

p
p

p p

= =

= = -

-= = = -

= - - + + + - -

 
Table 3: Comparison of the exact solution and numerical solutions by 4th order 
Runge Kutta method modified Runge kutta method and Runge kutta Mersion 
method, , which is displayed in Fig. 3 for the step size ℎ = 0.1.   

𝒙𝒊 Exact 𝒖 
RK MRK RKM 

 

Error with  
respect to 
RK 

Error with 
respect  to 
MRK 

Error with 
 respect to 
RKM 

1.0 1.00 1.00 1.00 1.00 0.00 0.00 0.00 
1.1 0.95631 1.01499 1.01457 5841.01  0.058678 0.0582575 0.0595341 
1.2 0.925466 1.02486 1.02399 6581.02  0.0993896 0.098529 0.101111 
1.3 0.907772 1.02962 1.02834 2141.03  0.121852 0.120568 0.124366 
1.4 0.903498 1.0295 1.02785 2631.03  0.126001 0.124354 0.129137 
1.5 0.912883 1.0249 1.023 28371.0  0.112014 0.110113 0.115491 
1.6 0.936142 1.01647 1.01448 19891.0  0.0803318 0.0783394 0.0837473 
1.7 0.973471 1.00515 1.00329 07971.0  0.0316812 0.0298172 0.0345015 
1.8 1.02505 0.992138 0.990681 998433.0  0.0329083 0.0343654 0.0313512 
1.9 1.09103 0.978941 0.978227 0.978433 0.11209 0.112804 0.112598 
2.0 1.17157 0.96738 0.9678 0.963878 0.204193 0.203773 0.207695 
Table 3 
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Example 4.  Consider the second order of nonlinear Bernuolli equation with 
fractional derivative: 
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72 4
3 3 3

4
3

2
2 2 2

81
33

' 22 2 (5.10)
( )( )

y yD y x D y Dy x x x y
y x�

§ ·
� �  � � � � �¨ ¸** © ¹  

with initial conditions: (1) 3, '(1) 9, ''(1) 36y y y  �  . To find the approximate 
solution for nonlinear differential equation (5.10), we shall reduce the Bernoulli’s 
equation to the linear equation by the transformation 1u y � , hence the equation 
will becomes: 

72 4
3 3 3

2
2

2 8
3

22 (5.11)
( )

d u dux D u x x x
dxdx

� �  � �
*

 

subject to the initial condition:
1 2
3 3

1011
3 3

1 2 2(1) , (1) , (1) , (1) 1
3 ( ) ( )

u D u D u Du= = = =
G G

,

54
3 3

8 7
3 3

2 2(1) , (1)
( ) ( )

D u D u= =
G G

. Consequently, we applying the 4th order Runge-

Kutta method (RK), modified Rune Kutta (MRK) and Runge kutta Mersion 
method (RKM). 

1 1 1
3 3 3

1 1
3 3

71 2
3 3 3

1 2 2 3 3 4

4 5 5 6

2
6 5 48

3

1,0 2,0 3,0 4,0 5,010 8 711
3 3 3 3

, , ,

, , (5.12)
22
( )

1 2 2 2 2(1) , (1) , (1) , (1) , (1)
3 ( ) ( ) ( ) ( )

D u u D u u D u u

D u u D u u

D u x x x x u u

u u u u u

= = =

= =

= - + - +
G

= = = = =
G G G G

 
Table 4: Comparison of the exact solution and numerical solutions by Rune Kutta 
method modified Runge kutta method and Runge kutta Mersion method, which is 
displayed in Fig.4. 

𝒙𝒊 Exactu  RK MRK RKM 
Error with 
respect to 
RK 

Error with  
respect to 
MRK 

Error with  
respect to 
RKM 

0.1  0.333333 0.333333 0.333333 0.333333 0.00 0.00 0.00 
1.1 0.443667 0.38687 0.378273 0.385637 0.056797 0.0653932 0.0580301 
1.2 0.576 0.447926 0.428647 0.444529 0.128074 0.147353 0.131471 
1.3 30.73233  0.516792 0.484695 0.510843 0.215541 0.247638 0.22149 
1.4 0.914667 0.593811 0.546707 0.585531 0.320856 0.36796 0.329135 
1.5 1.125 0.679386 0.615025 0.669688 0.445614 0.509975 0.455312 
1.6 1.36533 0.773995 0.690061 0.764568 0.591338 0.675272 0.600766 
.71  1.63767 0.878199 0.772306 0.871611 0.759468 0.86536 0.766055 
1.8 1.944 0.992658 0.862346 0.992471 0.951342 1.08165 0.9951529 
1.9 2.28633 1.11815 0.960881 1.12904 1.16818 1.32545 1.15729 
2.00 2.66667 1.25558 1.06874 1.2835 1.41109 1.59792 1.38317 
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Fig. 4. Comparing Exact solution of ( )u x with Runge-Kutta techniquesfor 4

2D   
Example 5.  Consider the second order of nonlinear Bernuolli equation with 

fractional derivative: 
1
2

2
2 4' 3 22 3 4 4 ( 3 ) (5.13)y yD y Dy D y Exp x y

y x xS S

§ ·
� �  � � � �¨ ¸¨ ¸

© ¹
 

with initial conditions:
31

2 2(1) (1) '(1) (1)y D y y D y e    , the exact solution of 
this equation is: ( )y Exp x .To find approximate solution for nonlinear fractional 
differential equation (5.13), we shall reduce Bernoulli’s equation to a linear 
equation by transformation 3u y � , hence the previous equation will becomes:  

1
2

2

2

22 3 4 ( 3 ) (5.14)d u du D u Exp x
dx dx xS

§ ·
� �  � �¨ ¸¨ ¸

© ¹
 

subject to the initial conditions: 1
23 31(1) , (1) ( 3) ,u e D u e

S
� �  �

3'(1) 3u e � �

3
2 31(1) ( 3 3)

2
D u e

S
��

 � . Consequently, we applying 4th order Runge-Kutta (4.4), 

modified Runge Kutta (4.8)  and Runge Kutta Mersion (4.9) for the following 
system: 

1 1 1
2 2 2

1
2

1 2 2 3 3 4

4 2 3

3 3 3 3
1,0 2,0 3,0 4,0

, , ,

(4 ) ( 3 ) 3 2 (5.15)

1 1(1) , (1) ( 3) , (1) 3 , (1) ( 3)
2

D u u D u u D u u
xD u Exp x u u

x

u e u e u e u e

p

p p
- - - -

= = =

= - - + -

-= = - = - = -

Table 5: Comparison of the exact solution and approximate solutions by 4th order 
Runge- Kutta method, modified Runge-Kutta method and Runge-Kutta Mersion 
method, which is displayed in Fig. 5 for the step size ℎ = 0.1.   



 
 

(286) 
 

𝒙𝒊 Exact
 

RK MRK RKM Error 
with 
respect to 
RK 

Error with 
respect to 
MRK 

Error with 
respect to 
RKM 

1.0 0.0497871 0.0497871 0.0497871 0.0497871 0.00 0.00 0.00 

1.1 0.0368832 0.0431816 0.0444443 0.0446999 0.00629843 0.00756108 0.00781672 

1.2 0.0273237 0.034826 0.0379366 0.0385131 0.00750228 0.0106129 0.0111894 

1.3 0.0202419 0.0244868 0.0301269 0.0310797 0.0042486 0.00988504 0.0108378 

1.4 0.0149956 0.0119516 0.0208902 0.0222659 0.00304395 0.00589459 0.00727029 

1.5 0.011109 -0.0029749 0.0101108 0.011949 0.0140839 0.00998148 0.0008401 

1.6 0.00822975 -0.0204763 -0.00231857 0.0000163468 0.0287061 0.0105483 0.0082134 

1.7 0.00609675 -0.0407294 -0.0164998 -0.0136375 0.0468261 0.0225966 0.0197343 

1.8 0.00451658 -0.0639093 -0.0325308 -0.0291122 0.0684259 0.0370474 0.0336288 

1.9 0.00334597 -0.0901959 -0.0505078 - 0.0465034 0.0935415 0.0538538 0.0498494 

2.0 0.00247875 -0.119779 -0.0705273 -0.0659053 0.122258 0.073006 0.0683841 

Table 5 

 
Fig. 5.Comparing Exact solution of ( )u x with Runge-Kutta techniquesfor 1

2D .  

6. Conclusion  
The aim of the present work is to find the approximate solution for the fractional 
differential equations of the Bernoulli Type. The problem has been reduced to 
solving a system of fractional differential equations under initial conditions. The 
desired approximate solution can be determined by solving the resulting system of 
linear fractional equations, which can be effectively computed using efficient and 
accurate methods. Finally, we applied the results on the some illustrative 
examples to show applicability of these techniques and we hoped that it would 
give us satisfactory results, but we didn't get the required.   
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