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Abstract 

This research studies the most important properties of electromagnetic 
waves and waveguides as a means to transferring information, communications 
and various applications, and the importance of nonlinear equations and there 
solutions which represent Solitons or unilateral waves, and how to get solutions of 
the nonlinear Schrodinger equation where it will describe its optical picoseconds 
pulse spread in silicon waveguides, and the importance of silicon semi-conductor 
crystal and their features that enable them to interact with efficient  nonlinear 
optical waves in the relatively low levels of electricity and distress. 

This paper shows the use of numerical solutions to nonlinear Schrödinger 
equations with finite difference method to solve, and graph the illustrations and 
comparisons to this topic using the experimental results of previous studies, to 
estimate various parameters needed for these solutions. 
Introduction: 

Electromagnetic waves consist of a combination of oscillating electrical 
and magnetic fields, perpendicular to each other and perpendicular to the direction 
of energy and wave propagation. Although they seem different, radio waves, 
microwaves, x-rays, and even visible light are all electromagnetic waves. They are 
part of the electromagnetic spectrum, and each has a different range of 
wavelengths, which cause the waves to affect matter differently. [1] 

James Maxwell first formally postulated electromagnetic waves in 
1864[2]. These were subsequently confirmed by Heinrich Hertz. Maxwell derived 
a wave form of the electric and magnetic equations, thus uncovering the wave-like 
nature of electric and magnetic fields, and their symmetry. Because the speed of 
electromagnetic waves predicted by the wave equation coincided with the 
measured speed of light, Maxwell concluded that light itself is an electromagnetic 
wave. 

Maxwell¶s equations are a set of partial differential equations that, 
together with the Lorentz force law, form the foundation of classical 
electrodynamics, classical optics, and electric circuits. These fields in turn 
underlie modern electrical and communication technologies.[3] 

Electromagnetic waves travel in vacuum or in any homogeneous medium 
in the form of straight lines, but may be subject to a number of phenomena as they 
travel from one medium to another medium, such as reflection, refraction, 
diffraction and dispersion. 
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As electromagnetic wave travels from one medium to another, parting 
them regular and not curvy interface, part of this wave will be reflected to the first 
medium and the reflection angle will equal the angle of incidence. The remaining 
part of the wave will travel to the second medium, moving in refracted path, 
where the angle of refraction of angle of incidence combine with refraction 
coefficients (refractive index) for both mediums according to the law of Snell. 

On the other hand, as the electromagnetic wave falls on curvy surface, the 
reflection will not be in one direction, but in multiple directions and this is called 
the phenomenon of dispersion. Furthermore, as the wave falls on a body with 
dimensions less than the wavelength of this wave, then the wave not be affected 
by the existence of the body but would deviate and continue travelling its course, 
and this is known as the phenomenon of diffraction. [2] 

The propagation of electromagnetic waves can be broadly classified into 
guided and unguided propagation. In guided propagation the waves are 
transmitted from one point to another following a prescribed path. In unguided 
propagation the waves are spread or radiated in an open space.  

Waveguides have undergone considerable development in the last few 
decades. Thus, besides the simple two copper wire lines, the coaxial cable and the 
hollow metallic pipes that have been used for many years, there are, in addition, 
the planer strip, microstrip lines, the various millimetric waveguides and the now 
popular optical fiber lines. The basic objective of any of these types remains 
almost the same.[4] 

Typical examples of such structures used in guiding waves are 
transmission lines and waveguides. The transmission lines are mainly of two types 
such as two wire transmission lines and   co-axial transmission lines. In case of 
two wire transmission line, two parallel conducting wires are separated by a 
uniform distance. In two wire transmission line wave guiding, the fields are 
guided or directed by two wires. In case of coaxial transmission line, two 
concentric conductors are separated by a dielectric medium. This type of the 
guiding structure has the advantage of restricting the electric and magnetic fields 
entirely within the dielectric region. Another means of guiding the waves is by the 
means of waveguide or tube. In waveguide, the field energy propagates inside a 
tube. The tube used of is either rectangular or cylindrical type without central 
conductor. 

Waveguides are classified into two classes; closed waveguides and open 
waveguides. Closed waveguides are characterized by being completely bounded 
with perfectly, or at least highly, reflecting boundaries. Open waveguides, on 
other hand are not completely bounded. [5] 

Types of nonlinear Wave equations  

In this section we will describe the nonlinear wave equation, and there are 
many different types of it, some types of these equations have solutions that 
display singularities or gradient blow-ups, while other types of equations have 
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smooth dispersive solutions (decaying in time and space) or, in some cases, stable 
travelling wave solutions. [6] 

Many exactly solvable models have soliton solutions, including the KdV 
equation, the nonlinear Schrödinger equation, the coupled nonlinear Schrödinger 
equation, and the sin-Gorden equation. Soliton or solitary wave is a localized 
wave propagates without change of its properties, and it is condition known in 
hydrodynamics since the 19th century.  [7] 

Then we are heading to the characteristics of the silicon crystal, the 
electronic states of crystals are described by the band theory of solids. The 
distinction between an insulator and a semiconductor is related to the size of the 
band gap. The band gap generally refers to the energy difference (in electron 
volts) between the top of the valence band and the bottom of the conduction band 
in insulators and semiconductors. [8] 

Other thing about silicon crystal is Silicon photonics which is an evolving 
technology in which data is transferred among computer chips by optical rays. 
Optical rays can carry far more data in less time than electrical conductors. [9] 

Wave propagation in nonlinear media 
           During the 1990s, a major factor behind such a sustained growth was the 
advent of fiber amplifiers and lasers, made by doping silica fibers with rare-earth 
materials such as Erbium and Ytteryium. Erbium-doped fiber amplifiers 
revolutionized the design of fiber-optic communication systems, including those 
making use of optical solitons, whose very existence stems from the presence of 
nonlinear effects in optical fibers [10]. Optical amplifiers permit propagation of 
light wave signals over thousands of kilometres as they can compensate for all 
losses encountered by the signal in the optical domain. At the same time, fiber 
amplifiers enable the use of massive wavelength-division multiplexing, a 
technique that led by 1999 to the development of lightwave systems with 
capacities exceeding 1 Tb/s. Nonlinear fiber optics plays an important role in the 
design of such high-capacity lightwave systems. In fact, an understanding of 
various nonlinear effects occurring inside optical fibers is almost a prerequisite for 
a lightwave-system designer. [11]     

    Starting around 2000, a new development occurred in the field of nonlinear 
fiber optics that changed the focus of research and has led to a number of 
advances and novel applications in recent years. Several kinds of new fibers, 
classified as highly nonlinear fibers, have been developed. They are referred to 
with names such as microstructured fibers, holey fibers, or photonic crystal fibers, 
and share the common property that a relatively narrow core is surrounded by a 
cladding containing a large number of air holes.[12] 

The nonlinear effects are enhanced dramatically in such fibers. In fact, with a 
proper design of microstructured fibers, some nonlinear effects can be observed 
even when the fiber is only a few centimetres long. The dispersive properties of 
such fibers are also quite different compared with those of conventional fibers, 
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developed mainly for telecommunication applications. Because of these changes, 
microstructured fibers exhibit a variety of novel nonlinear effects that are finding 
applications in the fields as diverse as optical coherence tomography and high-
precision frequency metrology [10]. 

   Nonlinear Optics: 
      Nonlinear optics is the branch of optics that describes the behaviors of light in 
nonlinear media, that is, media in which the polarization P responds nonlinearly to 
the electric field E of the light. This nonlinearity is typically only observed at very 
high light intensities [13]. 

Nonlinear optics gives rise to a host of optical phenomena: 

Second-order nonlinear processes:   
There is a number of nonlinear optical phenomena can be described as second-
order nonlinear processes. 

 1 Second harmonic generation (SHG), or frequency doubling, when light of 
well-defined wavelength hits a surface, a small percentage of photons might 
"clash" together when returning from nonlinearities of the surface material, 
forming a wavepacket of double the energy (half the wavelength) of the incoming 
photons. This is the SHG signal that corresponds to greater resolution than the 
incoming photons. 

 2 Sum and Difference-frequency generation and Parametric amplification, 
the Sum Frequency generation is the process in which light beams at two 
frequencies interact in some special conditions to produce light at a new 
frequency equal to the sum of the interacting frequencies ሺ𝜔3 ൌ 𝜔1 ൅ 𝜔2ሻ. In 
difference-frequency generation (DFG), two input fields with frequencies Ȧ1 and 
Ȧ2 generate a nonlinear signal at the frequencyሺ𝜔3 ൌ 𝜔1 െ 𝜔2ሻ. The 
Parametric amplification of a signal input in the presence of a higher-frequency 
pump wave, at the same time generating an idler wave [10,14].  

Third-order nonlinear processes:   
 Optical nonlinearity of the third order is a universal property, found in any 
material regardless of its spatial symmetry. This nonlinearity is the lowestorder 
nonvanishing nonlinearity for a broad class of centrosymmetric materials, where 
all the even-order nonlinear susceptibilities are identically equal to zero for 
symmetry reasons. Third-order nonlinear processes include a vast variety of 
processes:  

 1 Self-phase modulation (SPM), the third-order nonlinearity gives rise to an 
intensity dependent additive to the refractive index: 

𝑛 ൌ 𝑛0 ൅ 𝑛2𝐼ሺ𝑡ሻ  , 

where n0 is the refractive index of the medium in the absence of light field,  
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     𝑛2 ൌ ሺ2𝜋 𝑛0⁄ ሻ2𝑥ሺ3ሻሺ𝜔; 𝜔, 𝜔, െ𝜔ሻ is the nonlinear refractive index, 

𝑥ሺ3ሻሺ𝜔; 𝜔, 𝜔, െ𝜔ሻ  is the third-order nonlinear-optical susceptibility, and I (t) is 

the intensity of laser radiation. 

Thus, self-phase modulation results in spectral broadening of a light pulse 
propagating through a hollow fiber. This effect allows compression of light pulses 
through the compensation of the phase shift acquired by the pulse in a hollow 
fiber. 

 2 Temporal Solitons, the nonlinear phase shift acquired by a laser pulse 
propagating through a medium with Kerr nonlinearity can be balanced by group-
velocity dispersion, giving rise to pulses propagating through the nonlinear 
dispersive medium with an invariant or periodically varying shape: optical 
solitons (a special class of solutions to the nonlinear Schrödinger equation). 

 3 Cross-phase modulation (XPM), is a result of nonlinear-optical interaction of 
at least two physically distinguishable light pulses related to the phase modulation 
of one of the pulses (a probe pulse) due to the change in the refractive index of the 
medium induced by another pulse (a pump pulse). 

Similarly, to self-phase modulation, cross-phase modulation can be employed for 
pulse compression. The dependence of the chirp of the probe pulse on the pump 
pulse intensity can be used to control the parameters of ultrashort pulses. 

 4 Four-Wave Mixing, In general-type four-wave mixing is three laser fields with 
frequencies 𝜔1, 𝜔2, and 𝜔3 generate the fourth field with a frequency 
ሺ𝜔ிௐெ ൌ 𝜔1 േ 𝜔2 േ 𝜔3ሻ. In the case when all three laser fields have the 
same frequency  ሺ𝜔ிௐெ ൌ 3𝜔ሻ. 

  5 Optical Phase Conjugation, it is generally understood as the generation of an 
optical field with a time-reversed wave front, or with a conjugate phase. This 
effect can be used to correct aberrations in certain types of optical problems and 
systems. 

  6 Stimulated Raman scattering, vibrations or rotations of molecules, electronic 
motions in atoms or collective excitations of matter can interact with light, 
shifting its frequency through an inelastic scattering process by the frequency 
ȍ of Raman-active motions. This phenomenon was discovered by Raman and 
Krishnan and almost simultaneously by Mandelstam and Landsberg in 1928. In an 
intense laser field, pump laser photons and frequency-shifted photons act 
coherently to resonantly drive molecular motions, leading to the amplification of 
the Raman-shifted signal. This effect is called stimulated Raman scattering (SRS). 

 7 Third harmonic generation (THG), generation of light with a tripled 
frequency (one-third the wavelength) (usually done in two steps: SHG followed 
by SFG of original and frequency-doubled waves). [10, 15,16,17] 
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Other nonlinear processes:  
 1 Optical Kerr effect, The Kerr effect or the quadratic electro-optic effect (QEO 
effect) is a change in the refractive index of a material in response to an electric 
field. It is distinct from the Pockels effect in that the induced index change is 
directly proportional to the square of the electric field instead of to the magnitude 
of the field. All materials show a Kerr effect, but certain liquids display the effect 
more strongly than other materials do. The Kerr effect was found in 1875 by John 
Kerr, a Scottish physicist. The refractive index (or index of refraction) of a 
medium is a measure for how much the speed of light (or other waves such as 
sound waves) is reduced inside the medium.  

The Pockels effect, or Pockels electro-optic effect, produces birefringence in an 
optical medium induced by a constant or varying electric field. Two special cases 
of the Kerr effect are normally considered: the Kerr electro-optic effect, or DC 
Kerr effect, and the optical Kerr effect, or AC Kerr effect. 

 2 Stimulated Brillouin scattering (SBS), is a nonlinear process that can occur in 
optical fibers at input power levels much lower than those needed for stimulated 
Raman scattering (SRS). It manifests through the generation of a backward- 
propagating Stokes wave that carries most of the input energy, once the Brillouin 
threshold is reached. Stimulated Brillouin scattering is typically harmful for 
optical communication systems. At the same time, it can be useful for making 
fiber-based Brillouin lasers and amplifiers.  

 3 Two-photon absorption (TPA), is the simultaneous absorption of two photons 
of identical or different frequencies in order to excite a molecule from one state 
(usually the ground state) to a higher energy electronic state. The energy 
difference between the involved lower and upper states of the molecule is equal to 
the sum of the energies of the two photons. Two-photon absorption is a third-
order processes several orders of magnitude weaker than linear absorption. It 
differs from linear absorption in that the strength of absorption depends on the 
square of the light intensity, thus it is a nonlinear optical process. 

 4 Multiple photoionization, the first studies of multiple photoionization of free 
atoms was made about 1923 by Auger. He used a Wilson cloud chamber filled 
with argon gas at about 1 atm. pressure, through which he passed x-rays with 
energies in the 20 keV range. He observed numerous small tracks surrounding the 
starting point of the larger photoelectron track. After a series of experiments, he 
observed that the small tracks always had the same length regardless of the x-ray 
energy that was used. However, the length of the photoelectron track was a 
function of the x-ray energy. [15,16,17,18] 

Numerical Calculation 
Single Solitons: 
Theory and numerical technique 

In this work, the form of the nonlinear Schrödinger equation is obtained 
from equation  
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డ௧మ ൅ 𝛾|𝐹|2𝐹 ൌ 0                                       (4.1.1) 

Where F is the amplitude of the soliton 

 Į is waveguide linear loss 

𝛽2 group velocity dispersion 

 And 

    𝛾 ൌ 𝛾1 ൅ 𝑖𝛾2 ൌ ௡మ
ఒ஺೐೑೑

൅ 𝑖 ఉ೅ುಲ
2஺೐೑೑

                                            (4.1.2) 

𝑛2 is the nonlinear Kerr index coefficient, 𝐴௘௙௙ is the effective cross section of the 
waveguide and 𝛽்௉஺ is the two photon absorption coefficient.  

With initial conditions 

𝐹ሺ𝑧, 0ሻ ൌ 𝑓ሺ𝑧ሻ                                                                        (4.1.3) 

and boundary conditions 

డிሺ௭,௧ሻ
డ௭

ൌ 0   , 𝑎𝑡          𝑧 ൌ 𝑧1 ൌ 𝑧2                                          (4.1.4) 

for our numerical work, we decompose the complex function F into their real and 
imaginary parts by writing 

𝐹ሺ𝑧, 𝑡ሻ ൌ 𝐴ሺ𝑧, 𝑡ሻ ൅ 𝑖𝐵ሺ𝑧, 𝑡ሻ                                                    (4.1.5) 

 where 𝐴ሺ𝑧, 𝑡ሻ, 𝐵ሺ𝑧, 𝑡ሻ are real functions. By substituting equations (4.1.5) and 
(4.1.2) into equation (4.1.1), we can obtain two systems 
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In order to develop the numerical solution for the system in equations (4.1.6) and 
(4.1.7), the space domain is between [z1, z2] is divided into a large number of 
nodes at the coordinates 

𝑧௡ ൌ 𝑛ℎ      , 𝑛 ൌ 0,1,2, … 𝑁                                             (4.1.8) 

where h is the space separation between adjacent nodes. 

The time domain is also divided into small intervals of length k such that 

𝑡௠ ൌ 𝑚𝑘      , 𝑚 ൌ 0,1,2, … 𝑀                                          (4.1.9) 

To second order in h, the space derivatives are evaluated by the finite difference 
method 

𝑑𝐹
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௠ ൅ 𝐹௡−1

௠ െ 2𝐹௡
௠

ℎ2  

To propagate the solution in to space, we introduce a computer program to 
solve the nonlinear Schrödinger equation in space domain numerically. This 
program is based on fourth order Runge_Kuta method, and is shown in 
Appendix(I). 

The first step is to calculate the input signal pulse which has a Gaussian 
shape with two parts, real part and imaginary part using the subroutine sig(k,M). 

The signal profile is at ሺ𝑧 ൌ 0ሻ as a function of discretized time as shown 
in figure (4.1). This profile is   fed into the subroutine called Integ and N steps in 
space are carried by using Runge_Kuta method. Then the result is fed into the 
subroutine Auv to get the absolute values of the signal which is easily graphed as 
two-dimensional surface plots. 

Numerical Results 
To investigate the performance of the proposed scheme, the first step is to 

assume a specific shape for the signal pulse, we choose the Gaussian shape of the 
form 

𝐴ሺ0, 𝑡௠ሻ ൌ 𝐴0𝑒𝑥𝑝 ቂെ ሺ௧೘−௧బሻమ

2ఋమ ቃ                                       (4.1.10) 

Where į, A0 and t0 are constants. 
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Figure (4.1): the input wave Gaussian shape. 

The next step, we will inter a Gaussian shape [figure (4.1)] in silicon on insulator 
waveguide at  𝜆 ൌ 1550𝑛𝑚 and I use the parameters from table (1) [46«51] in 
my calculation. 

Table (1): values of the parameters for SOI waveguides used for numerical 
calculations.            

Values (1) [46,47]  (2) [48,49] (3) [50,51] 
𝐴௘௙௙ ሺ𝑚2ሻ 0.37×10-12 0.38×10-12 0.4×10-12 

𝑛2 ሺ𝑚2 𝑊⁄ ሻ 6×10-18 4.4×10-18 6×10-18 
𝛽்௉஺ሺ𝑚 𝑊⁄ ሻ 5×10-12 5×10-12 5×10-12 

𝛼 ሺ𝑑𝐵 𝑚⁄ ሻ 11.6 22 100 
𝛽2ሺ𝑠2 𝑚⁄ ሻ -0.1701×10-24 -0.56×10-24 20×10-24 

𝛾1 ሺ1 𝑚𝑊⁄ ሻ 12.0968 7.47 9.677 
𝛾2 ሺ1 𝑚𝑊⁄ ሻ 7.8125 6.579 6.25 

Now we can consider that  𝛽2 ൌ 0, because 𝛽2 is very small (10-24), and we can 
change the equation from equations (4.1.6) and (4.1.7) to this form 

డ஺
డ௭

ൌ െ ఈ
2

𝐴 െ ሺ𝐴2 ൅ 𝐵2ሻሾ𝐴𝛾2 ൅ 𝐵𝛾1ሿ.                                      (4.1.11) 
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𝐵 െ ሺ𝐴2 ൅ 𝐵2ሻሾ𝐵𝛾2 െ 𝐴𝛾1ሿ.                                        (4.1.12) 

When compensation program values given in Table 1, it produces us the 
following forms 

In Figure (4.2) shows to us the input and output pulse shapes (values 1) after 
distance  5mm, which the red curve represents the input wave, while showing the 
linear loss effect Į in orange curve and operates a reduction in the value of the 
input wave, when I add the nonlinear Kerr effect 𝛾1 to linear loss effect (yellow 
dash curve) the wave does not show any affected and applies the resulting wave 
on the orange curve, while the green curve shows us what happens when add tow 
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photon absorption effect 𝛾2 with linear loss effect where the reduction will 
happen to the wave twice resulting from reduction of linear loss effect alone , 
while at the impact on the wave with (Į , 𝛾1 , 𝛾2), the blue dash curve 
representative them will apply to the green curve completely. 

 
Figure (4.2): The input (red curve) and output pulse shapes (parameter values 

column1) and the corresponding spectra under several different conditions, orange 
curve include linear loss (α) only, green curve include linear loss and TPA effect 
(𝛾2), yellow dashed curve include linear loss and nonlinear Kerr effect (𝛾1), and 

blue dashed curve include (𝛼, 𝛾1, 𝛾2). 

 Now the spread of the incoming wave (values 1) when it moves in the waveguide 
its length 5 cm after 10 distance steps the Figure (4.3) shows that to us. 

Figure (4.3): the surface shape of the wave when it moves in the waveguide 
(value 1) its length 5 cm, after 10 distance steps. 
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 Figure (4.4): The input (red curve) and output pulse shapes (parameter values 
column 2) and the corresponding spectra under several different conditions orange 

curve include linear loss (𝛼ሻ only, green curve include linear loss and TPA 
effectሺ𝛾2ሻ, yellow curve include linear loss and nonlinear effectሺ𝛾1ሻ, and blue 

curve include ሺ𝛼, 𝛾1, 𝛾2ሻ 

Figure (4.4) shows the input and output pulse shapes (parameter values 2) after 5 
mm distance, which the red curve represents the input wave while the impact of 
the linear loss effect Į will appear in orange curve which leads to a reduction in 
the input wave, upon added the nonlinear Kerr effect 𝛾1to Į as it appears in the 
dash yellow curve the wave will apply to the orange curve, but if we used the 
influence of tow photon absorption 𝛾2 to Į as in the green curve, the value of the 
decrease of the wave will reach almost  twice of the resulting from reduction of 
linear loss effect alone, while at the impact on the wave with (Į , 𝛾1 , 𝛾2), the 
dash blue curve representative them will apply to the green curve completely. 

Now the spread of the incoming wave (values 2) when it moves in the waveguide 
its length 5 cm after 10 distance steps the Figure (4.5) shows that to us. 

 

 

 

 

 

 

 

Figure (4.5): the surface shape of the wave when it moves in the waveguide 
(value 2) its length 5 cm, after 10 distance steps.  
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Figure (4.6) shows the input and output pulse shapes (parameter values 3) after 5 
mm distance, which the red curve represents the input wave while the impact of 
the linear loss effect Į will appear in orange curve which have a reduction in the 
value equivalent  almost  a quarter of the value of the input wave, upon added the 
nonlinear Kerr effect 𝛾1to Į as it appears in the dash yellow curve the wave will 
apply to the orange curve, but if we used the influence of tow photon absorption 
𝛾2 to Į as in the green curve, the value of the decrease of the wave will reach 
almost a third of the input wave, while at the impact on the wave with (Į , 𝛾1 
, 𝛾2), the dash blue curve representative them will apply to the green curve 
completely. 

 
Figure (4.6): the input (red curves) and output pulse shapes (parameter values 

column 3) and the corresponding spectra under several different conditions, 
orange curve include linear loss ሺ𝛼ሻ only, green curve include linear loss and TPA 

effect ሺ𝛾2ሻ, yellow dash curve include linear loss and nonlinear effect ሺ𝛾1ሻ, and 
dash blue curve includeሺ𝛼, 𝛾1, 𝛾2ሻ. 

Now the spread of the incoming wave (values 3) when it moves in the 
waveguide its length 5 cm after 10 distance steps the Figure (4.7) shows that to us. 
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Figure (4.7): the surface shape of the wave when it moves in the waveguide 
(value 3) its length 5 cm, after 10 distance steps. 

from equations (4.1.6) (4.1.7) if we put that Į =0, β =0 and 𝛾2=0,  we obtain the 
equations                                            (4.1.13) 

These equations show that the real and imaginary parts of the function F are 
mutual in the equations, where each value will replace the other one resulting in 
pure rotation and hence no reduction in amplitude. 

Figure (4.8) shows the effect of 𝛾1 on the real and imaginary parts of the function 
F where the influence on the absolute value of F will have no effect, meaning 
that its impact will be zero when (Į = 0, 𝛾2 = 0, 𝛽2 ൌ 0). 

 

Figure (4.8): The input wave (red curve) and the effect ReF ,ImF, and an 
absolute value of F (dashed blue curve). 

Now, if we will inter a Gaussian shape in other kind of silicon waveguide at  𝜆 ൌ
1550𝑛𝑚 and used the parameters from table (2), and comparable with column 
(3) from table (1), then we obtain the following figures. 
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Table (2): values of the parameters for silicon waveguides used for numerical 
calculations. 

Values (4) [52, 53] 
porous silicon 

(5) [54,55]  
silicon-nc wg 

𝐴௘௙௙ ሺ𝑚2ሻ 19.3×10-12 0.05×10-12 
𝑛2 ሺ𝑚2 𝑊⁄ ሻ 2.3×10-18 8×10-17 
𝛽்௉஺ሺ𝑚 𝑊⁄ ሻ 0.8×10-11 20×10-11 

𝛼 ሺ𝑑𝐵 𝑚⁄ ሻ 1100 200 
𝛽2ሺ𝑠2 𝑚⁄ ሻ 0 0 

𝛾1 ሺ1 𝑚𝑊⁄ ሻ 0.0769 1000 
𝛾2 ሺ1 𝑚𝑊⁄ ሻ 0.2073 2000 

The figure (4.9) shows the spread of the incoming waves when they moves in the 
waveguide its length 3 mm after 10 distance steps as a comparison between SOI 
waveguide (column (3) from taple (1)) and porouse silicon (from taple (2)).  As 
shown in figure (b,d) the impact of porous silicon is leads to large reduced on the 
input wave to become a quarter of value in the end, and figure (a,c) shown the 
impact of SOI waveguide which the effect on the input wave is small impact after 
this distance. 
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Figure (4.9): The comparison between the surface shapes of SOI waveguide (a, c) (column (3) 
from table (1)), and porous silicon (b, d) (table (2)) when they move in the waveguide its length 
3mm, after 10 distance steps. 

The figure (4.10) shows the spread of the incoming waves when they moves in the 
waveguide its length 3 mm after 10 distance steps as a comparison between SOI 
waveguide (column (3) from taple (1)) and silicon nano-crystal deposited by 
³Plasma Enhanced Chemical Vapor Deposition´ method (PECVD) (from taple 
(2)) .  As shown in figure (b,d) the impact of silicon nano-crystal is leads to large 
reduced on the input wave but with change in the shape to more flattened shape 
wave, and figure (a,c) shown the impact of SOI waveguide which the effect on the 
input wave is small impact after this distance. 
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Figure (4.10): The comparable between the surface shapes of SOI waveguide (a, 
c) (column (3) from table (1)), and silicon nanocrystal (b, d) (table (2)) when they 

move in the waveguide its length 3mm, after 10 distance steps. 
Conclusion 

In this paper, the nonlinear Schrödinger equation in time domain and its 
numerical solutions have been derived and studied numerically with finite 
difference method up second order. This equation is used to study the propagation 
of ultra short optical pulses in silicon waveguides and the possibility of soliton 
formation and supercontinuum generation. 
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For silicon waveguides its length less that 1cm the Gaussian wave we 
entered and maintained their shapes so they are considered as soliton or solitary 
waves. For porous silicon and silicon nano-crystal other physical effects may 
affect the various parameters and still under experimental investigations. 

This paper provides an overview for understanding the basic theory of 
silicon waveguides, so that the properties of silicon waveguides can be used to 
new and useful applications in communications and fast optical transmission of 
data in computers. 
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