JOURNAL OF HUMANITARIAN AND APPLIED SCIENCES aduinillg duluwill pglell dlao
ISSUE 14 - VOLUME 7 7 alaall - 14 122l

ISSN: 2706-9087

ON SOLUTIONS OF INITIAL VALUE PROBLEM
FOR NONLINEAR FRACTIONAL BERNOULLI
EQUATIONS

Mufeedah Maamar Salih Ahmed

Department of Mathematics, Faculty of Art & Science Kasr Khiar
Elmergib University, Khums, Libya
mmsahmad32@gmail.com

: gl

sl M il 7 &) Adomian decomposition method J bl 3i b a3t (WM ods 3
B S g Wslas bisd o i V) by il e B Bmyll) e (Rad) Al il 2SO 2kolid) g
JSLin o gl Vb 85 sl o5y o Lt & AV Ly nl) wad (aas) Bos 8 38 il Wolas )
1) el Aoyl WaeY) an Auls JM e U3 5 (ADM bt 285 ey M e 2J0Y1 )
N ol s 5eliST 13 ks elas Aedall 2k ol COSTIS) Le Ban g Aol

Abstract

This research article discusses the Adomian decomposition method that has been
applied to solving second-order the nonlinear (linear) fractional differential equation for
the Bernoulli equation with initial conditions. Firstly, the Bernoulli equation with
fractional derivatives is transferred to a nonlinear (linear) fractional differential equation
subject to initial conditions. Then it investigated the existence of approximate solutions to
this type of initial value problem by applying Adomian decomposition technique. In view
of the convergence of this method, some illustrative examples are included to demonstrate
the proposed technique and show the efficiency of the presented method.

Keywords: Fractional differential equation; Adomian decomposition method; Caputo
fractional derivative; the Bernoulli differential equation with fractional derivative.

1. Introduction

Since the differential equations with fractional derivatives can describe many important
phenomena in electromagnetic, acoustics, viscoelasticity, electrochemistry, cosmology,
and material science [4,21,28,36], both professional and academic researchers in various
fields have devoted considerable effort to find their explicit solutions. Because of the
impossibility of achievement in solving explicit exact solutions for most of these problems,
analytical approximate solutions are of academicals and practical importance. Due to the
availability of computer symbolic systems like Mathematica or Maple, some fundamental
methods have been extended to solve fractional differential equations [22,38,42,
34,35,30,42] and approximate solutions have been found increasingly.
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Adomian decomposition method (ADM) [12,14] was firstly proposed by the American
mathematician, Adomian and is one of the powerful methods by which the approximate
solutions for large classes of nonlinear differential equations can be derived.

In recent decades considerable interest in fractional differential equations (FDE)
has been stimulated due to their numerous applications in the areas of physics and
engineering [4,16]. Damping laws, diffusion processes [8] and fractals [4] are better
formulated with the use of fractional derivatives integrals [15],[16],[25].In addition,
Atanackovic and Stankovic [40] have analyzed the lateral motion of an elastic column

fixed at one end and loaded at the other, in terms of a system of FDE .

Applying the Adomian decomposition method (ADM) to obtain solutions of
several delay differential equations subject to history functions and then investigated
numerical examples via subroutines in MAPLE that demonstrate the efficiency of the new
approach which was illustrated in[5]. The authors studied the analytical solutions of
telegraph equations and fractional partial differential equations were determined using the
Laplace-Adomian decomposition method (LADM) [17], and the Adomian Decomposition
Method is a semi-analytical method to compute nonlinear second-order differential
equations, where this study was introduced by [27]. Wazwaz [2] established a new
algorithm for calculating the so-called Adomian polynomials and introduced the modified
ADM to solve various differential equations with strong nonlinear terms. Based on Newton
method. Abbasbandy [37] presented the modified ADM and applied it to construct the
numerical algorithms,in order to overcome inaccurate terms arising from solving nonlinear
differential equations with the higher time-derivative. Abassy [39] defined new Adomian
polynomials and provided a qualitative improvement over the standard ADM. Song and
Wang [31] presented the enhanced ADM, which followed the framework of the standard
ADM, introduced the h-curve, established a recursive relationship, and obtained
approximate solutions with higher accuracy.

Rawashdeh [32] examined a novel method called the Natural Decomposition
Method (NDM) and used it to obtain exact solutions for three different types of nonlinear
ordinary differential equations (NLODEs).

Recently, several analytical or numerical methods have been previously proposed
to solve fractional differential equations such as the Adomian decomposition method
[34,41,15,16, 25,26], and various numerical methods [29,6,9,18], and also you can read
other methods in [7,19,20].

The discussion is organized as follows. In the next section, operators of fractional
calculus. In Section 3, Analysis of the Adomian Decomposition Method. In Section 4, we
consider a class of initial value problems for fractional Bernoulli differential equations
with 2" order and ADM. In Section 5, we discuss four illustrative examples of IVPs for
fractional B. DEs. Conclusions are presented in Section 6.

2. Operators of Fractional Calculus

In this section, we describe some necessary definitions and mathematical preliminaries
of the fractional calculus theory.
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Definition 1. A real function fx)x>0 , 1s said to be in the space C/‘ ,u € R if there

exists a real number % ~ # | such that fx)=xf, (x)’ where fix) eC (0,00), and it is

c’ ff(”)eC#,ne

said to be in the space ~ ” if and only i N.

Definition 2. Riemann-Liouville fractional integral operator < aof order o > 0, of a

functionf ec/‘,u > —1 is defined as

« * (x=s)""

Jf(x)=| ——F (s)ds, x>0
f)=]] o ©

J (x)=f (x) (2.1)

. : . feC _
where! ()is Euler's gamma function, and we have some properties for #and #=1

of the operator </ “that can be referred to in the works [21,36,28], which we only recall the
following ones:

1 T )= (x)
I ) =TT ()

a+y

Jeyr - L+
3- I'y+a+1)

> — > —
fOrfeC#,,u_ La,f20, & y> 1.
Let/ (¥)ig piecewise continuous on (0, o) and integrable on any finite subinterval of

(0, 0)and a be a positive real number satisfying " —l<asm,;; eN* Then the
p ying

Riemann—Liouville fractional derivative of / ) of order o, when it exists, is defined as

D (x)= ;imm (J"f (¥)), x>0 (2.2)

.. — (n) .
Let @ be a positive real number, such that " I<asm, ;¢ N* and /) exist and be

a function of class C .Then the Caputo fractional derivative of S &) of order @ is defined
as:

DIf (x)=J"f ™ (x), x>0 (2.3)
for the Caputo fractional derivative of a polynomial function, the following equality holds

D%(a,x"+a, _,x " +..+a,)=0, m-l<a<m, r<m-1 (2.4)
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Moreover, the a-order integral of the a-order Caputo fractional derivative satisfies

JjD;f(x)zf(x)—Zf<k>(o+)’;—, m-l<a<m (2.5)

m—1 k
|

B
For the power function * ,B>0 i 0<m-1<a<m then we have:

poxf = TP e o (2.6)
T(B—a+])

The Caputo fractional derivative and the Riemann—Liouville fractional derivative satisfy
the following relation[44]:

Dif (x)=D¢ {f (X)—me(k)((V)%} (2.7)

3. Analysis of the Adomian Decomposition method

Let us first recall the basic principles of the ADM using an IVP for a nonlinear ODE in the
form

Lu+Ru+Nu=g(x) (3.1)

where & is a known analytical function, and where L is the linear operator to be inverted,
which usually is just the highest order differential operator, R is the linear remainder part,
and & is the nonlinear operator, which is assumed to be analytic. Furthermore, we choose
L= d

dx" " for n" = order differential equations and thus its inverse L~ follows as the

-1
n —fold definite integration operator from Yo 10 x ,we havel Lu =u —® yhere @

p1 o (x,—x)*
ARl T

incorporates the initial values as

Applying the inverse linear operator L™ to both sides of Eq. (3.1) gives

u=0+L"g(x)=L"TRu +Nu] (3.2)

The Adomian decomposition method decomposes the solution into a series:
u= Zun (3.3)

and then decomposes the nonlinear term Nu into a series:
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Nu=>) A, (3.4)

where ~ " depending on Hoslhs-sty are called the Adomian polynomials and are obtained

for the nonlinearity Nu =1 (u ) by the definitional formula[11]

1 an o0
A Ak ,n=0,1,.. 3.5
" n'@i”{ (Zu ﬂ o " (3-5)

where 4 is simply a grouping parameter of convenience.

We list the formulas of the first several Adomian polynomials for the one-variable simple

. . .. Nu=f(u . . .
analytic nonlinearity S ( ) from 4, through 4; , inclusively, for convenient
reference as

Ay =1 (u,)
A, =1 "o,

Ay =1 oy +f "(uo)%

A3 :f '(uo)u3 +f "(uo)uluz +f (3)(”o)ﬁ

A, =f W, +f "(”o)( : +u1”3}+f(3)( U ——

”1”2

(4) 1
o +f (0)

As=f uous +f "(Uo)( Uy U, )+f(3)( 0)(Mj+f<4)(uo)“1;#+f(5)(u0)1/;_15'

Upon substitution of the Adomian decomposition series for the solution ( )and the series

of Adomian polynomials tailored to the nonlinearity V from Egs. (3.3) & (3.4) into Eq.
(3.2), we have

iun =y(x)-L" {R iun + iAn} (3.6)

. u (x .
The solution components /(¥) may be determined by one of several advantageous
recursion schemes, which differ from one another by the choice of the initial solution

U \x .. . . . .
component (%) , beginning with the classic Adomian recursion scheme
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uy(x)=y(x)

U, (x)=-L" {Riun(xHiAn}n >0 (3.7)

where Adomian has chosen the initial solution component as™ho (r)=7(x) .The n-term
approximation of the solution is

gon(x)zni:uk(x) for n>0 (3.9)

Thus ? =402 = AT 0, =0, iy elc serve as approximate solutions of increasing
accuracy as n increases and must of course satisfy the boundary conditions [13], the
remarkable measure of success of the ADM is demonstrated by its widespread adoption
and many adaptations to enhance computability for specific purposes, such as the various

modified recursion schemes. The choice of decomposition is not unique, which provides a
valuable advantage to the analyst, permitting the freedom to design modified recursion
schemes for ease of computation in realistic systems.

4. TVP for nonlinear fractional Bernoulli Differential Eqs.

In this section, we consider the initial value problem for the second-order nonlinear
fractional equation for Bernoulli differential equation [22], which can be written in the
form:

R(x)
Ir'd—a)x

P(x)D’y +R(x)D“y +Q(x)Dy +S(x)y :mP(x)y'2+ —y +f (x)y" 4.1
Y

subject to the following initial conditions:” @)=t y@=p, y'@=1, , Where:

P(x)=0,0(x)#0,m =2 Hys

and also 0> 1 are not equal to zero, where 0<a <2

To find solution for this type of differential equations, we shall transform the Bernoulli’s
_ . 1-m

equation (4.1) to the linear equation by the transformation =Y and hence (4.1) will

becomes as (see[33]):

L(P(x)ﬁmu)mu +Q(x)d—u]+5(x)u =/ (x) (42)
dx dx

1-m

— 1-m — 1-m — D :D 1-m —
subject to the initial conditions: u@)=y " (@)= =co, Du@)=D(y"" (@)=,

D2u(a):D2(y l_"’(a)):c3.

To find numerical solution for initial value problem (4.2),(4,3) by the ADM, firstly, can be
written the problem in operator form as:
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Lu S () =S (x Ju (R(X)D u+Q(X)—j (4.3)
( )( > P(x)
d2
L= o rt=[" [ (ddx.
where dx~ is linear operator, with the inverse operator defined as a Ja

Applying the inverse operator L™ on both sides of equation (4.3) and imposing the initial
conditions yield:

u=cy,+(x +1)c, +11D—(;n) Lil(f(x)—S(x )u)—ﬁL1 (R (x)Du +Q(x);l—z) (4.4)

where (@)=c,, Du(a)=c, In [13], the ADM assumes a series solution for ¥ (x) given by
an infinite sum of components:

u()= 2, @) (4.5)

and then decompose the analytic nonlinearity £ into the series of the Adomian
polynomials as form:

Fu :E(iunJ:iAn, Fu :iBn (4.6)
n=0 n=0

n=0

where 4,8, are the Adomian polynomials given by:

R e e

where 4 is simply a grouping parameter of convenience.

Substituting the decompositions of the solution and the nonlinear term into eq. (4.1) yields:

( f(x)- i j—mL-l(Zan (4.7)

n=0 n=0

Du, =cy+(x +1)e, +
n=0

from which we obtain the recursion scheme for the solution components,
u =y +(x +1)e, 4L ()
0 0 1 P(X )
1 - m -1 1

— L' (S(x )un)—mL A”_P(x)

1-m
un+1:
P(x)

L'B,,n>0 (4.8)
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To compute this formula is easy by using mathematical software or Maple program to get
as many polynomials as we need in the calculation of the numerical as well as explicit

solutions. Finally, we approximate the solution” (x) by the truncated series as:
n—1

P, ()= v, (x) limp, (x)=y(x) (4.9)
k=0

5. Illustrative examples

In this section, we present the examples for the nonlinear fractional Bernoulli equations
with initial conditions investigated to show the efficiency of the method described in the
previous section.

Example 1. Consider the following nonlinear fractional Bernoulli equation with initial
conditions:

" . 1 y' y 2\/_ 4x : )
y"+y'+Dy =2 + -X — y (5.1
y  TOWx ( NN j
yM=-2,y'M)=0,y ")=—4
2
yx)=— ,Vx €[L,3]
with exact solution x°—2x , and note that the exact solution isn't

continuous function at X =2

To find approximate solution for nonlinear equation (5.1) by applying ADM method, first,
|

we reduce the Bernoulli equation to the linear equation by the transformation U=y

therefore the equation (5.1) will become to:

d’u L
dx2+—+D =2 + +— (5.2)

u(h)=5, u'()=0u"(0)=1

Subject to the initial conditions:

Consequently, the series solution for (x) by using the ADM described in [13] for this

u(e)=Yu, (x)

equation given by: n=0

w=u(l)+(x —Du'Q)+L" [2\/Z+x +ﬂ\/x7—3]L1 (d—uj—L‘l (D%u) (5.3)
T 3\« dx

Accordingly, the iteration formula for the (5.2) equation is given by
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. =)+ (e =D+ [ [ (—2@ +x +§\/§ ~D'u, (x)—%}dxdx

From this equation and by using initial conditions for Eq.(5.2),the iterates are determined

by the following recursive way:

1 pxopx X 4 /x3
u0:7+j1 L {—2\/;+x +§ ?]dxdx

= —r r (M—D;uo(x )]dxdx

(5.4)

U,

1 J1 dx

u

= _jlx le (% -D %un (x )j dxdx
x

n+l

Then, we can find the previous integral, hence, the first two terms of the ADM series

solution, are as follows:
-1 44 [ 4 1) 8x: x® 16x®
Uy=— — | —t—t—
6 105z \5Nz 2) 15z 6 105x
w=["T|p phcl_# (4 _lJ 8x x3 16x3)dxdx_
% 105V 5z 2 15\/_ 105\/_

3 3 3
44 (4 1) 8x: x' 16 )dedx

v d -1
-[]] (5(2_105\/;+ vz 2/ 15\/_ 105\/_

L_13 568 241 (8 3 1) [176 N
'60 15757 9457 \ 357 7z 24 3157 9\/_

16)cE 64)6E i

1.2 |22 _
{4 5\/?}6 {757: 15f] +105\/? 945,/

5

and

L4922 674 457 { -656 86 37 —ij+
27720 47252 20257 5005Vx 15754 6757 385Vx 40

Jo222 964 13 s (11 4
47257 28357 45z (48 357 14J_
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oo 8 7 (1, 4 ) (128 16 )i
52570 15757 457 9 637 5257 1057
( 1, J P S S v VAN A v

48 30\/_ 9457w 120 103957 240 13513547

Hence, the ADM series solution of the initial value problem (5.2) can be given by:

ux)=uy(x)+u, (x)+u,(x)+u,(x)+... (5.5

V. (x)

Tablel shows the approximate solution y(x) =~ Z of the fractional differential

equation (5.1) and the approximate solution u(x) = Z"=0u" 2 of the differential equation
(5.2) obtained by using the ADM method. It is to be note that only the sum of the first six
iterations was used in evaluating the approximate solution for Fig. 1, where we note from
the graphical results in Fig. 1, it is clear that the approximate solution is in agreement with
the exact solution present.

Exact solution ADM Absolute value Exact ADM Absolute value
X solution

y(x,) Y u(x,)  ou,(x;)
1.0 -2.00 -1.99999 8.881784X10716 -0.5 -0.5 0.0
1.2 -2.0833333 -2.08332 0.0000141839 -0.48 -0.4800033 32680031 x107°
1.4 -2.3809524 -2.3809 0.0000506202 -0.42 -0.4200089 8.9295924><10_6
1.6 -3.125 -3.12486 0.000138471 -0.32 -0.3200141 0.00001418075
1.8 -5.555556 -5.55493  0.000621014 -0.18 -0.1800201 0.00002012312
2.0 ComplexInfinity -28847.8 ComplexInfinity 0.00 -0.0000347 0.00003466474
2.2 4.5454545 4.54705  0.00159875 0.22 0.2199226  0.00077352499
24 2.0833333 2.08407  0.000737967 0.48 0.47983003 0.00016996746
2.6 1.28205128 1.28249  0.000433945 0.78 0.7797361 0.00026392268
2.8 0.892857143 0.892852 4.88701><104’ 1.12 1.1200061 6.1302945><10_6
3.0 0.666666667 0.665799 0.00867903 1.5 1.5019655 0.0019553275

Table 1.The absolute errors of example (1) between the approximate values by ADM and
the exact solution
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1.5
10
05F
1‘5 2.0 2.‘5 3.0
0.
Exact sol. for u
TEILRLLIIILIL AD‘Mfor u,

Exact Sol. fory
XI55 20210) ADA{foryn

sessenes oeoe Exact SOI.fOr.}' ssanausscs s Bxact So{lfor u

sssonsses ADMfory, sssonsses ADMforu,
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Figure 1. comparing between approximate solution and exact solution

The tablel indicates that as we get closer and closer to 2, the speed of oscillation of the

curve of the approximate solution of”Y (%) increases between +©and—©. In order to
illustrate of the problem, the reason for this is that when X approaches 2 from the right-
hand limit, the value of the approximate solution will approach +, and as X approaches 2
from the left-hand limit, the solution will approach —°. This means that the approximate

solution ofY is increasing in the period [2.3] , and also is decreasing in the period [L2] 14
addition, as we get closer and closer to 2, the rate of increase in the value of the
approximate solution will increase. So this is why the approximate solution curve
fluctuates rapidly between +%and —o°.

Figurelreveal that, if the values of the approximate solution of " are infinitely increased or
decreased when X approaches 2 from the right or left sides and becomes infinitely
discontinuous.

Example 2. Consider the following nonlinear fractional Bernoulli differential equation
2,3 5 El
y"+y'—XD5y=2y _Ir \/;—6x +@—3x2—\/;—x+ Ox y?
y TG 12 12 12r¢) T)

subject to initial conditions:

24 48(36 - )

(5.6)

|y 165888 - 9216 Jr +144x

yO=—7m=y'O=-———=>v"0)
24w (24_J;)2 (24—\/2)3
1
J’(X)Zfd;2
with exact solution WY goranX €[L2]

To find approximate solution for nonlinear equation (5.6) by applying ADM method , first,
R

we reduce the Bernoulli equation to the linear equation by the transformation U=y

therefore the equation (5.6) will become to:
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8 11
Jrxd o o 6x

du _*/;(x+1)+6x +3x 2+
125 T'(%)

X
dx’ dx 12
Jr | N Jz

u'(l)= 3—3 u'(l)= 6—3.

u(1)=1—§

(5.7)

Subject to the initial conditions
Consequently, the series solution for ¥ (x) by using the ADM described in [13] for this

u(x)=yu,x)
, therefore we have

n=0

equation given by
_J;(x +1)+ 6x +3x2+@— Ox +L1(xD;u)—L1(
12r) I'%) dx

du j (5.8)

u=u(l)+x —u '(1)+L1£

Accordingly, the iteration formula for the (5.2) equation is given by

Jrel 6x +xDu (x)— d”d(x)]d dx
X

_*/;(x+1)+6x $3x
12r¢) I'(5)

c=u(l)+(x — T '(1)+j1"j1"(

From this equation and by using initial conditions for Eq.(5.6),the iterates are determined

by the following recursive way:
\/_) H ﬁ(x—l)+6x PRS2 SN2 P
12 12r¢) T

_ \NTT T
BT FE A
(5.9)

o] f o -4 e
! du,(x)
—f I (xD u, (x)— e )d dx

Hence , the first two terms of the ADM series solution are as follows

\/; +[—1+£+ 27 \/; Jx—

S6I% 44T

o3 Nz 21
4 36 68I'% 56I'8 24
_\/;xz 1_\/; x3+ﬁ—3 7rx7_81x%

24 72 4 6lert 952r%
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3

22 20 19 3 17
o2 3 39\ 3z | 39 1372 L3,
1~ 16 16 2,2 16 16 22 16 12,2
4r 16 162 152116 162 162
304 3400 (') 52r 1877 2(r'2) 56143T 23
3 3
2 14 2
364x 5 1337 137 3, ~18207 4557 4

X + — X + X
243\Br§(r%) 11r%(r%)2 264\/§r§(r %)2 243J§r§(r %) 4374ﬁr%(r%)

3 11 3 8
_oow* 3 66l 23Wx 9z 9lx? 3.
396\/§F%(F %)2 44800(T %)2 35200(r%)2 NEY i %)Zr% 216\/31"% @ %)2
3 5 3
2187 817 1827 18272 3 91072 3

+ + — x 2+ X
6800(1"%)2 5600(1"%)2 Ji(r—%)zr% 243ﬁr%(r%)2 2187431182

3 3
137 9172 36407 45572 2

+ + + -
2\/§r%(r§)2 297\/§r§(r%)2 243\Br%(r%) 729\/§r%(r%)

3
13851 3517 L9 N 814197 1147972

* 2° 2 16 416 2" 2"
95200(r%) 61600(1“%) 152rld 24rid 5049\Br%(r%) 16038£F§(r%)

3
18207 91072 3 22599 459n N

+ - x - + - + +
243\/§r%(r%) 2187\/§r%(r%) r% 761600(1"%)2 246400(1“%)2 57r%

3

8077817 21388972 3647, 227572
100980\/5(1“—%)21"% 545292\/§r%(r%)2 27\/51“%@%) 4374\/§r%(r%)

w

1
.

2
Table 2 shows the approximate solution y(x) = Zn:oy” (x) for fractional equation (5.6)

2
and the approximate solution u(x) =~ Z"ZOM” 2 for differential equation (5.7) obtained by

using ADM method have been plotted in Figure 2, where we note from the graphical
results in Fig. 2, the approximate solution is in agreement with the exact solution present.
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Table 2.The absolute errors of eq. (5.6) between the approximate values by ADM and the
exact solution

Exact solution ADM Absolute value Exact solution ADM Absolute value

xi y(xi) yn |y YV u(‘xi) un(xi) |u —u,

1.0 1.07974 1.07974 5 22045%107"*  0.92614 0.926148 5 55045%x107"
1.1 0.805387 0.805603 0.000215296 1.24164 1.24131 0.000331826
1.2 0.616655 0.617607 0.000952025 1.62165 1.61915 0.00249974
1.3  0.482581 0.484676 0.00209471 2.07219 2.06323 0.00895575
1.4 0384726 0.388206 0.00347957 2.59925 2.57595 0.0232976
1.5 031164 0.316629 0.00498875 3.20883 3.15827 0.0505579
1.6  0.255955 0.262506 0.00655134 3.90694 3.80943 0.0975051
1.7 0.212786 0.220916 0.00813003 4.69957 4.52662 0.172951

1.8 0.178804 0.188514 0.00970963 5.59272 5.30466 0.28806

1.9 0.15169 0.162979 0.0112894 6.59239 6.13574 0.456649
2.00 0.129793 0.142671 0.0128787 7.70459 7.00911  0.69548

Exact sol. for u
'SSIR2222000 ADA{forun

Exact Sol. fory
YIRS 00] AD‘\-_{foryn

Figure 2. comparing between approximate solution and exact solution
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Example 3. Consider the nonlinear fractional Bernoulli equation with initial conditions:

2 ﬁ
yhy =Dy ry =42 Y ] a7 3xSix0y 0 7 vt (5.10)
y TEx I'es)

|} _ " _ j— -3
subject to initial conditions: ¥ D=Ly ' ==3,3 "M =12 ity exact solution” (x)=x

To find approximate solution for nonlinear equation (5.10) by applying ADM method,

_ 3
first, we reduce the Bernoulli equation to the linear equation by the transformation =y ,
therefore the equation (5.10) will become to:

2 44
d L;+d—u—D%u—3u =72x7+9x8—3x9—ix 3 (5.11)
dx?  dx ()

u()=1, u'(1)=9,u

Subject to the initial conditions: 'M=72 Consequently, the series

solution for ¥ (x) by using the ADM described in [11,12,13] for this equation given by
u(x)=pu,x)

n=0 , therefore we have:

44

had s 5.12
u=u()+ —Du'Q)+L™" 72x7+9x8—3x9—ix 5 +L'1(D§u)—L‘1 du +3L7u (>-12)
(?) dx

Consequently, we obtained the results approximate solutions for eq.(5.12) through the
iteration formula of this equation which is given by:

6 e 1 du
x° |dxdx +I I Du, ——"+3u, |dxdx
re) BN dx

(5.13)

n+l -

U =—8+x +JT le(72x7+9x8—3x9—

Y, (x)

2
Hence, the following table 3 shows approximate solution y(x) = Z"=0 for

2
fractional equation (5.10) and approximate solution u(x) =~ Z"=0u” ) for differential
equation (5.11) obtained by using ADM method have been plotted in Figure 3.
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Table 3.The absolute errors of eq. (5.10) between the approximate values by ADM and the
exact solution

Exact ADM Absolute Exact ADM Absolute
X, solution value solution value

y(xi) Y |y —Va u(xi) un(xi) |u_un
1.0 1.00 1.00 0.00 1.00 1.00 0.00

1.1 0.424098 0.425858 0.00176066 2.35795 2.3482  0.00974866
1.2 0.193807 0.195561 0.00175446 5.15978 5.11349 0.0462905
1.3 0.0942996 0.0954497  0.00115009 10.6045 10.4767 0.127775
1.4 0.0484003 0.0490855  0.000685239  20.661 20.3726 0.28843

1.5 0.0260123 0.0264186  0.000406317  38.4434 37.8521 0.591257
1.6 0.0145519 0.0147993  0.000247394  68.7195 67.5707 1.14876

1.7 0.00843257  0.00858869 0.000156122 118.588 116.432 2.15565

1.8 0.00504136  0.0051435 0.000102139 198.359 194.42  3.939

1.9 0.00309897  0.00316802 0.0000690475 322.688 315.655 7.03303

2.0 0.00195313  0.00200115 0.0000480287 512.0 499.712 12.2882

Exact Sol. fory
TrRRRRRRRRRARR ADAlfory,z STIIIRE2100) Al)j([_foru’g

Exact sol. for u
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Figure 3. comparing between approximate solution and exact solution

Example 4. Consider the following nonlinear Fractional differential equation with initial
condition:

12

"y V_X%D0-9 :3ly__L
y'+y y =3 roD
NENN S«f ”)x3+(5_\/; T 15kt -(3+ 5“/;) 20 el (s1e)
9" 6 288 6 48T() e Ty

o () =1.07974,y '(1) =—3.32532,y "(1) = 13.6594

subject to initial condition , with exact

solution 7 ¥) =& Ty Vx e[l,2]

To find approximate solution for nonlinear equation (5.14) by applying ADM method,

_ .2
first, we reduce the Bernoulli equation to the linear equation by the transformation® =Y
therefore the equation (5.14) will become to:

du 9 du —7z 5\/_ T
1" 10D049 + = NS
*2(dx2 * ! dx) 96 + 288)
(i T st Vs, 30 0 (s
48T (41 63! r(%

Subject to the initial conditions: % (1)=0.85775, u (1) =5.28329,u "(1) =27.1114

Consequently, the series solution for (x) by using the ADM described in [13] for this

()= u,(x)

equation given by , therefore we have:

u =u(1)+(x —1)u '(1)+L71 (XZJDO‘gu)—L' (d_uj_

dx
21 Ex (i—iw 5‘/_ 15kt -3+ 5*/_ 4300 6
96 288 6 48r( I 6T (! r(%

Consequently, we obtained the results approximate solutions for eq.(5.15) through the
iteration formula of this equation which is given by:

=)+ (e =D+ [ [x 5D, (x )—dexdx —2f' [ ( (i -y ]dxdx

288
- j j ( 15 -3+ 5\/_ 6dedx
481“(‘”) 6T (3L r(
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4
Hence, Table 4 shows the approximate solution y(x) =~ Z":‘)y" (x)

ot (X)

for Equation (5.14)

4
and the approximate solution u(x) =~ Z" for Equation (5.15) obtained by using

ADM method has been plotted in Figure 4. It is to be noted that only the three iterations
were used in evaluating the approximate solution for Fig. 4.

Exact ADM Absolute Exact ADM Absolute
X, solution value solution value

ye) oy, porl ) wG) ke,
1.0 1.079741 1.0797411 0.000001 0.85775 0.85775 3.3395><10*7
1.1 0.8053872 0.80538723  0.00000003 1.54166687  1.54166679 8.1617X10_8
1.2 0.6166548 0.61665488  0.00000008 2.62975770  2.629757 4.9716x10’7
1.3 0.4825813 0.48258135  0.00000005 4.29397018  4.293969 92190%107
14 0.3847264 0.38472646  0.00000006 6.75609849  6.756097 1.3699x107°
1.5 03116398 0.311639858  0.000000058  10.2966057  10.296604 | ggr7x10™
1.6 0.2559549 0.255954923  0.000000023  15.2641665  15.264264 9 4393x107°
1.7 0.21278556 0.212785576  0.000000016  22.0859301  22.085927 3 18186%10™
1.8 0.17880391 0.178803927  0.000000017  31.2785028  31.278499  429043x107
1.9 0.151689978 0.151689988 0.00000001 43.4596507  43.459644 ¢ 50304%x107°
2.0 0.129792743  0.129792757 0.000000014  59.3607228  59.3607093 0.0000135429

Table 4.The absolute errors of eq.(5.14) between the approximate values by ADM and
exact solution
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Exact sol. for u Exact Sol. fory

R RRRRRERET AD_\{fO?u}: 'SII21I2112110) .'iD.\-ffOr_}'n

Figure 4. comparing between approximate solution and exact solution

6. Conclusion

In this paper, the Adomian decomposition method has been successfully employed

to obtain the approximate solutions of second-order the nonlinear fractional differential
equation for the Bernoulli equation. Moreover, the results obtained in this research showed
that the approximate solutions for this type of nonlinear fractional differential equations of
the Bernoulli equation, which was obtained from this method are almost the same as the
analytical solutions; in addition, the method is efficient, reliable, and computationally

stable.
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