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 الملخص: 

تطبيقها لحل معادلة    التي تمَّ    Adomian decomposition methodلـــل  يتحلالفي هذه المقالة، ناقشنا طريقة  
الكسرية  معادلة برنولي    تحويليتم    حيثغير خطية )الخطية( من الدرجة الثانية مع الشروط الأولية.  ال برنولي التفاضلية الكسرية  

ريبية لهذا النوع من مشاكل  إلى معادلة تفاضلية كسرية غير خطية )خطية( تخضع للشروط الأولية. ثم بحثنا عن وجود حلول تق
التحل  تقنية  تطبيق  الأولية من خلل  دراسة   ADMليالقيمة  ذلك من خلل  التقنية  ، و  لتوضيح  التوضيحية  الأمثلة  بعض 

 . و معرفة ما إذا كانت الطريقة المقدمة تظهر نتائج ذات كفاءة جيدة أم لا المقترحة 

Abstract 

This research article discusses the Adomian decomposition method that has been 
applied to solving second-order the nonlinear (linear) fractional differential equation for 
the Bernoulli equation with initial conditions. Firstly, the Bernoulli equation with 
fractional derivatives is transferred to a nonlinear (linear) fractional differential equation 
subject to initial conditions. Then it investigated the existence of approximate solutions to 
this type of initial value problem by applying Adomian decomposition technique. In view 
of the convergence of this method, some illustrative examples are included to demonstrate 
the proposed technique and show the efficiency of the presented method.  

Keywords: Fractional differential equation; Adomian decomposition method; Caputo 
fractional derivative; the Bernoulli differential equation with fractional derivative. 

1. Introduction  

Since the differential equations with fractional derivatives can describe many important 
phenomena in electromagnetic, acoustics, viscoelasticity, electrochemistry, cosmology, 
and material science [4,21,28,36], both professional and academic researchers in various 
fields have devoted considerable effort to find their explicit solutions. Because of the 
impossibility of achievement in solving explicit exact solutions for most of these problems, 
analytical approximate solutions are of academicals and practical importance. Due to the 
availability of computer symbolic systems like Mathematica or Maple, some fundamental 
methods have been extended to solve fractional differential equations [22,38,42, 
34,35,30,42] and approximate solutions have been found increasingly. 
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Adomian decomposition method (ADM) [12,14] was firstly proposed by the American 
mathematician, Adomian and is one of the powerful methods by which the approximate 
solutions for large classes of nonlinear differential equations can be derived.  

In recent decades considerable interest in fractional differential equations (FDE) 
has been stimulated due to their numerous applications in the areas of physics and 
engineering [4,16]. Damping laws, diffusion processes [8] and fractals [4] are better 
formulated with the use of fractional derivatives integrals [15],[16],[25].In addition, 
Atanackovic and Stankovic [40] have analyzed the lateral motion of an elastic column 
fixed at one end and loaded at the other, in terms of a system of FDE . 

Applying the Adomian decomposition method (ADM) to obtain solutions of 
several delay differential equations subject to history functions and then investigated 
numerical examples via subroutines in MAPLE that demonstrate the efficiency of the new 
approach which was illustrated in[5]. The authors studied the analytical solutions of 
telegraph equations and fractional partial differential equations were determined using the 
Laplace-Adomian decomposition method (LADM) [17], and the Adomian Decomposition 
Method is a semi-analytical method to compute nonlinear second-order differential 
equations, where this study was introduced by [27]. Wazwaz [2] established a new 
algorithm for calculating the so-called Adomian polynomials and introduced the modified 
ADM to solve various differential equations with strong nonlinear terms. Based on Newton 
method. Abbasbandy [37] presented the modified ADM and applied it to construct the 
numerical algorithms,in order to overcome inaccurate terms arising from solving nonlinear 
differential equations with the higher time-derivative. Abassy [39] defined new Adomian 
polynomials and provided a qualitative improvement over the standard ADM. Song and 
Wang [31] presented the enhanced ADM, which followed the framework of the standard 
ADM, introduced the h-curve, established a recursive relationship, and obtained 
approximate solutions with higher accuracy. 

Rawashdeh [32] examined a novel method called the Natural Decomposition 
Method (NDM) and used it to obtain exact solutions for three different types of nonlinear 
ordinary differential equations (NLODEs). 

Recently, several analytical or numerical methods have been previously proposed 
to solve fractional differential equations such as the Adomian decomposition method 
[34,41,15,16, 25,26], and various numerical methods [29,6,9,18], and also you can read 
other methods in [7,19,20]. 

The discussion is organized as follows. In the next section, operators of fractional 
calculus. In Section 3, Analysis of the Adomian Decomposition Method. In Section 4, we 
consider a class of initial value problems for fractional Bernoulli differential equations 
with 2nd order and ADM. In Section 5, we discuss four illustrative examples of IVPs for 
fractional B. DEs. Conclusions are presented in Section 6. 

2. Operators of Fractional Calculus 

In this section, we describe some necessary definitions and mathematical preliminaries 
of the fractional calculus theory. 
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Definition 1. A real function ( ), 0f x x > , is said to be in the space C ,μ ∈ ℝ if there 

exists a real number  , such that 1( ) ( )f x x f x= , where 1( )f x ∈ C (0,∞), and it is 

said to be in the space 
nC m if and only if 

( ) ,nf C n ℕ. 

Definition 2. Riemann-Liouville fractional integral operator J 𝛼of order α ≥ 0, of a 

function f C , μ ≥ −1 is defined as 

1

0

0

(x s)( ) (s) , 0
( )

( ) ( ) (2.1)

x
J f x f ds x

J f x f x






−−
= 



=



 

where (.) is Euler's gamma function, and we have some properties for f C  and 1  −  
of the operator J  that can be referred to in the works [21,36,28], which we only recall the 
following ones:   

1- ( ) ( )J J f x J f x   +=  

2- ( ) ( )J J f x J J f x   =  

3- 

( 1)
( 1)

J x x   
 

+ +
=
 + +  

for , 1, , 0, & 1f C       −   − . 

Let ( )f x is piecewise continuous on (0, ∞) and integrable on any finite subinterval of 
(0, ∞)and α be a positive real number satisfying 1 ,m m−   m ℕ+. Then the 
Riemann–Liouville fractional derivative of ( )f x of order α, when it exists, is defined as 

( )( ) ( ) , 0 (2.2)
m

m
x m

dD f x J f x x
dx

 −= 
 

Let be a positive real number, such that 1 ,m m−   mℕ+ and 
( ) ( )nf x exist and be 

a function of class C .Then the Caputo fractional derivative of ( )f x of order is defined 
as: 

( )( ) ( ), 0 (2.3)m m
xD f x J f x x −= 

 

for the Caputo fractional derivative of a polynomial function, the following equality holds 

1
0 1(a a ... a ) 0, 1 , r 1 (2.4)r r

x r rD x x m m m −
−+ + + = −    −  
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Moreover, the α-order integral of the α-order Caputo fractional derivative satisfies 

1
(k)

0
( ) ( ) (0 ) , 1 (2.5)

!

km

x x
k

xJ D f x f x f m m
k

  
−

+

=

= − −  
 

For the power function , 0x     if 0 m 1 m −   then we have: 

( 1) , 0 (2.6)
( 1)xD x x x   
 

− +
= 
 − +  

The Caputo fractional derivative and the Riemann–Liouville fractional derivative satisfy 
the following relation[44]: 

1
(k)

0
( ) ( ) (0 ) , (2.7)

!

km

x x
k

xD f x D f x f
k

 
−

+

=

 
= − 

 


 

3. Analysis of the Adomian Decomposition method 

Let us first recall the basic principles of the ADM using an IVP for a nonlinear ODE in the 
form 

( )( ) 3.1Lu Ru Nu g x+ + =  

where g  is a known analytical function, and where L is the linear operator to be inverted, 
which usually is just the highest order differential operator, R is the linear remainder part, 
and N is the nonlinear operator, which is assumed to be analytic. Furthermore, we choose

(.)
n

n

dL
dx

=
 for thn − order differential equations and thus its inverse 1L−  follows as the 

n − fold definite integration operator from 0x  to x , we have
1L Lu u− = − , where  

incorporates the initial values as 
1 0
0

( )
!

k
p

ik

x x
k

−

=

−
 =

. 

Applying the inverse linear operator 1L− to both sides of Eq. (3.1) gives 

 

1 1( ) [ ] (3.2)u L g x L Ru Nu− −= + − +  

The Adomian decomposition method decomposes the solution into a series: 

0
(3.3)n

n
u u



=

=
 

and then decomposes the nonlinear term Nu into a series: 
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0
(3.4)n

n
Nu A



=

=
 

where nA depending on 0 1, ,..., nu u u are called the Adomian polynomials and are obtained 

for the nonlinearity ( )Nu f u=  by the definitional formula[11] 

0 0

1 , 0,1,... (3.5)
!

n
k

n kn
k

A f u n
n








= =

   = =     


 

where   is simply a grouping parameter of convenience. 

 

We list the formulas of the first several Adomian polynomials for the one-variable simple 

analytic nonlinearity ( )Nu f u= from 0A  through 5A , inclusively, for convenient 
reference as 

( )

0 0

1 0 1
2
1

2 0 2 0

3
(3) 1

3 0 3 0 1 2 0

2 2 4
(3) (4)2 1 2 1

4 0 4 0 1 3 0 0

2 2
(3) 1 2 1 3

5 0 5 0 2 3 1 4 0

( )
'( )

'( ) ''( )
2!

'( ) ''( ) ( )
3!

'( ) ''( ) ( ) ( )
2! 2! 4!

'( ) ''( ) ( )
2!

A f u
A f u u

uA f u u f u

uA f u u f u u u f u

u u u uA f u u f u u u f u u f u

u u u uA f u u f u u u u u f u

=
=

= +

= + +

 
= + + + + 

 
 +

= + + + 


3 5
(4) (5)1 2 1

0 0( ) ( )
3! 5!

u u uf u f u+ +
  

Upon substitution of the Adomian decomposition series for the solution ( )u x and the series 
of Adomian polynomials tailored to the nonlinearity Nu from Eqs. (3.3) & (3.4) into Eq. 
(3.2), we have 

1

0 0 0
( ) (3.6)n n n

n n n
u x L R u A

  
−

= = =

 = − +  
  

 

The solution components ( )nu x may be determined by one of several advantageous 
recursion schemes, which differ from one another by the choice of the initial solution 

component 0 ( )u x , beginning with the classic Adomian recursion scheme 
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0

1
1

0 0

( ) ( )
(3.7)

( ) ( ) , 0n n n
n n

u x x

u x L R u x A n


 

−
+

= =

=

 = − +   
 

 

where Adomian has chosen the initial solution component as 0 ( ) ( )u x x= .The n-term 
approximation of the solution is 

1

0
( ) ( ) 0 (3.8)

n

n k
k

x u x for n
−

=

= 
 

Thus 1 0 2 1 1 3 2 2, , , .u u u etc    = = + = + serve as approximate solutions of increasing 
accuracy as n increases and must of course satisfy the boundary conditions [13], the 
remarkable measure of success of the ADM is demonstrated by its widespread adoption 
and many adaptations to enhance computability for specific purposes, such as the various 
modified recursion schemes. The choice of decomposition is not unique, which provides a 
valuable advantage to the analyst, permitting the freedom to design modified recursion 
schemes for ease of computation in realistic systems. 

4. IVP for nonlinear fractional Bernoulli Differential Eqs. 

In this section, we consider the initial value problem for the second-order nonlinear 
fractional equation for Bernoulli differential equation [22], which can be written in the 
form: 

2
2 ' ( )( ) ( ) ( ) ( ) ( ) ( ) (4.1)

(1 )
my R xP x D y R x D y Q x Dy S x y m P x y f x y

y x



+ + + = + +

 −

subject to the following initial conditions: 0 1 2( ) , '( ) , ''( )y a y a y a  = = =  , where: 
( ) 0,P x  ( ) 0, 2Q x m  and also 0 1,   are not equal to zero, where 0 2  . 

To find solution for this type of differential equations, we shall transform the Bernoulli’s 

equation (4.1) to the linear equation by the transformation 
1 mu y −= , and hence (4.1) will 

becomes as (see[33]):  

2

2

1 ( ) ( ) ( ) ( ) ( ) (4.2)
1

d u duP x R x D u Q x S x u f x
m dxdx

 
+ + + = −    

subject to the initial conditions: ( )1 1 1
0 0 1( ) ( ) , ( ) ( ) c ,m m mu a y a c Du a D y a− − −= = = = =

( )2 2 1
3( ) ( ) c .mD u a D y a−= =

 

To find numerical solution for initial value problem (4.2),(4,3) by the ADM, firstly, can be 
written the problem in operator form as: 



 
 

 ( 271 ) 

( )1 1( ) ( ) ( ) ( ) (4.3)
( ) ( )
m duLu f x S x u R x D u Q x

P x P x dx
−  = − − + 

   

where

2

2

dL
dx

=
 is linear operator, with the inverse operator defined as

1 (.) .
x x

a a
L dxdx− =    

Applying the inverse operator 1L− on both sides of equation (4.3) and imposing the initial 
conditions yield: 

( )1 1
0 1

1 1( 1) ( ) ( ) ( ) ( ) (4.4)
( ) ( )
m duu c x c L f x S x u L R x D u Q x

P x P x dx
− −−  = + + + − − + 

 
 

where 0 1( ) , ( ) .u a c Du a c= = In [13], the ADM assumes a series solution for ( )u x given by 
an infinite sum of components: 

0
( ) ( ) (4.5)n

n
u x u x



=

=
 

and then decompose the analytic nonlinearity F into the series of the Adomian 
polynomials as form:  

1 1 2
0 0 0

, (4.6)n n n
n n n

Fu F u A F u B
  

= = =

 = = = 
 
  

 

where ,n nA B are the Adomian polynomials given by: 

1 2
0 00 0

1 1,
! !

n n
k k

n k n kn n
k k

A F u B F u
n n

 

 
 

 

= == =

       = =             
 

 

where   is simply a grouping parameter of convenience. 

Substituting the decompositions of the solution and the nonlinear term into eq. (4.1) yields: 

1 1
0 1

0 0 0

1 1( 1) ( ) (4.7)
( ) ( )n n n

n n n

mu c x c L f x A L B
P x P x

  
− −

= = =

−    = + + + − −   
   

  
 

from which we obtain the recursion scheme for the solution components, 

( )

1
0 0 1

1 1 1
1

1( 1) ( )
( )

1 1 1( ) , 0 (4.8)
( ) ( ) ( )n n n n

mu c x c L f x
P x

m mu L S x u L A L B n
P x P x P x

−

− − −
+

− = + + +
 − − = − − 
  
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To compute this formula is easy by using mathematical software or Maple program to get 
as many polynomials as we need in the calculation of the numerical as well as explicit 
solutions. Finally, we approximate the solution ( )y x  by the truncated series as: 

1

0
( ) ( ) , lim ( ) ( ) (4.9)

n

n k nnk
x y x x y x 

−

→
=

= =
 

5. Illustrative examples 

In this section, we present the examples for the nonlinear fractional Bernoulli equations 
with initial conditions investigated to show the efficiency of the method described in the 
previous section. 

Example 1. Consider the following nonlinear fractional Bernoulli equation with initial 
conditions: 

3
21

2

2
2

1
2

' 2 4'' ' 2 (5.1)
( ) 3

(1) 2, '(1) 0, ''(1) 4.

y y x xy y D y x y
y x

y y y
 

 
+ + = + + − −    

= − = = −  

with exact solution 2

2( ) , [1,3]
2

y x x
x x

=  
− , and note that the exact solution isn't 

continuous function at 2x =  

To find approximate solution for nonlinear equation (5.1) by applying ADM method,  first, 

we reduce the Bernoulli equation to the linear equation by the transformation 
1u y −=

therefore the equation (5.1) will become to: 

1
2

2 3

2

42 (5.2)
3

d u du x xD u x
dx dx  

+ + =− + +
 

Subject to the initial conditions:  
1

2(1) , '(1) 0, ''(1) 1u u u−= = = .  

Consequently, the series solution for ( )u x by using the ADM described in [13] for this 

equation given by: 0
( ) ( )n

n
u x u x



=

= 
 

( )1
2

3
1 1 14(1) ( 1) '(1) 2 (5.3)

3
x x duu u x u L x L L D u

dx 
− − −
   = + − + − + + − −       

Accordingly, the iteration formula for the (5.2) equation is given by 
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1
2

3

1 1 1

( )4(1) ( 1) '(1) 2 ( )
3

x x n
n n

du xx xu u x u x D u x dxdx
dx +

 
= + − + − + + − −  

 
 

 

From this equation and by using initial conditions for Eq.(5.2),the iterates are determined 
by the following recursive way: 

1
2

1
2

3

0 1 1

0
1 01 1

1 1 1

1 42
2 3

( ) ( ) (5.4)

( ) ( )

x x

x x

x x n
n n

x xu x dxdx

du xu D u x dxdx
dx

du xu D u x dxdx
dx

 

+

 −
= + − + +  

 
 = − − 
 

 = − − 
 

 

 

 

M

 

Then, we can find the previous integral, hence, the first two terms of the ADM series 
solution, are as follows: 

5 7
2 23

0
1 44 4 1 8 16

6 2 6105 5 15 105
x x xu x

   
−  = − + − − + + 

   
5 7
2 21

2

5 7
2 2

3

1 1 1

3

1 1

1 44 4 1 8 16( )
6 2 6105 5 15 105

1 44 4 1 8 16( )
6 2 6105 5 15 105

x x

x x

x x xu D x dxdx

d x x xx dxdx
dx

   

   

  − = − + − − + + −    
  − − − + − − + +    

 

 
 

3
2

7 9
2 25

2

1

5
2

13 568 241 8 3 11 176 2
60 1575 35 24 315945 7 9

1 2 32 4 16 64 .
4 75 1205 15 105 945

u x x

x x xx x

    

   

  
 = − + + − − + + +       

   −
+ − + + + − −      
     

and 

3 3
2 2

3
2

3
2

2

2

49 272 674 457 656 86 37 1
720 2025 675 405005 3854725 1575

2272 964 13 11 4 3
2835 48 3545 144725

u x

x x

   

  

− = + + + + − − − + 
 

   
+ − − + − + +      
     
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5 7
2 2

3
2

9 1311
2 2 2

3

5 6
4

64 8 7 1 4 128 16
1575 9 52545 63 105525

11 1 32 128 128 .
48 120 24030 945 10395 135135

x x x

x x x x xx

   

   

     −
+ + + + − + + − +          
     
 −

+ + − − + + +  
 

M  

Hence, the ADM series solution of the initial value problem (5.2) can be given by:  

   0 1 2 3( ) ( ) ( ) ( ) ( ) .... (5.5)u x u x u x u x u x= + + + +  

Table1 shows the approximate solution y(x) ≈
6

0
( )nn

y x
= of the fractional differential 

equation (5.1) and the approximate solution u(x) ≈
6

0
( )nn

u x
= of the differential equation 

(5.2) obtained by using the ADM method. It is to be note that only the sum of the first six 
iterations was used in evaluating the approximate solution for Fig. 1, where we note from 
the graphical results in Fig. 1, it is clear that the approximate solution is in agreement with 
the exact solution present. 

 

 
x  
 

Exact solution ADM Absolute value Exact 
solution 

ADM Absolute value 

( )iy x  ny  ny y−
 ( )iu x  ( )n iu x  nu u−

 
1.0 -2.00 -1.99999 8.881784

1610−  -0.5 -0.5 0.0 
1.2 -2.0833333 -2.08332 0.0000141839 -0.48 -0.4800033 3.2680031

610−  
1.4 -2.3809524 -2.3809 0.0000506202 -0.42 -0.4200089 8.9295924

610−  
1.6 -3.125 -3.12486 0.000138471 - 320.  -0.3200141 0.00001418075 
1.8 -5.555556 -5.55493 0.000621014 -0.18 -0.1800201 0.00002012312 
2.0 ComplexInfinity  -28847.8 ComplexInfinity  0.00 -0.0000347 0.00003466474 
2.2 4.5454545 4.54705 0.00159875 0.22 0.2199226 0.00077352499 
2.4 2.0833333 2.08407 0.000737967 0.48 0.47983003 0.00016996746 
2.6 1.28205128 1.28249 0.000433945 0.78 0.7797361 0.00026392268 
2.8 0.892857143 0.892852 4.88701

610−  1.12 1.1200061 6.1302945
610−  

3.0 0.666666667 0.665799 0.00867903 1.5 1.5019655 0.0019553275 
Table 1.The absolute errors of example (1) between the approximate values by ADM and 
the exact solution 
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Figure 1. comparing between approximate solution and exact solution 

The table1 indicates that as we get closer and closer to 2, the speed of oscillation of the 
curve of the approximate solution of (x)y increases between + and− . In order to 
illustrate of the problem, the reason for this is that when x approaches 2 from the right-
hand limit, the value of the approximate solution will approach + , and as x approaches 2 
from the left-hand limit, the solution will approach− . This means that the approximate 
solution of y is increasing in the period [2,3] , and also is decreasing in the period [1,2] . In 
addition, as we get closer and closer to 2, the rate of increase in the value of the 
approximate solution will increase. So this is why the approximate solution curve 
fluctuates rapidly between + and− .  

Figure1reveal that, if the values of the approximate solution of y are infinitely increased or 
decreased when x approaches 2 from the right or left sides and becomes infinitely 
discontinuous. 

Example 2. Consider the following nonlinear fractional Bernoulli differential equation 

82 11
3 3 31

3

2
2 2

82 11
3 3 3

' 6'' ' x 2 6 3 (5.6)
( ) 12 12 12 ( ) ( )

y x y x x xy y D y x x y
y

   
+ − = − + − + − − +     

subject to initial conditions: 

  

( )
( ) ( )2 3

48 3624 165888 - 9216  + 144(1) , '(1) , ''(1)
24 24 24

y y y
  

  

−
= = − =

− − −
 

with exact solution 
3 2

24

1( )y x
x x

=
− for all [1, 2]x  . 

To find approximate solution for nonlinear equation (5.6) by applying ADM method , first, 

we reduce the Bernoulli equation to the linear equation by the transformation 
1u y −= , 

therefore the equation (5.6) will become to: 
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8 11
3 31

3

2
2

2 8 11
3 3

6(x 1) 6 3 (5.7)
12 12 ( ) ( )

d u du x xxD u x x
dx dx

 −
− + = + + + + −

 
 

Subject to the initial conditions:  
(1) 1 , '(1) 3 , ''(1) 6

24 12 12
u u u  

= − = − = −
. 

Consequently, the series solution for ( )u x by using the ADM described in [13] for this 

equation given by 0
( ) ( )n

n
u x u x



=

=
, therefore we have 

( )
8 11
3 3 1

31 2 1 1
8 11
3 3

6(1) ( 1) '(1) ( 1) 6 3 (5.8)
12 12 ( ) ( )

x x duu u x u L x x x L xD u L
dx

 − − −
 −  = + − + + + + + − + −        

Accordingly, the iteration formula for the (5.2) equation is given by 
8 11
3 3 1

32
1 8 111 1

3 3

6 ( )(1) ( 1) '(1) (x 1) 6 3 ( )
12 12 ( ) ( )

x x n
n n

x x du xu u x u x x xD u x dxdx
dx

 
+

 −
= + − + + + + + − + −    

 
 

From this equation and by using initial conditions for Eq.(5.6),the iterates are determined 
by the following recursive way: 

8 11
3 3

1
3

1
3

2
0 8 11

1 1 3 3

1
1 11 1

1 1 1

61 ( 1)(3 ) (x 1) 6 3
24 12 12 12 ( ) ( )

( )( ) (5.9)

( )( )

x x

x x

x x n
n n

x xu x x x dxdx

du xu xD u x dxdx
dx

du xu xD u x dxdx
dx

   

+

 
= − + − − + − + + + −    

 = − 
 

 = − 
 

 

 

 

M

 

Hence , the first two terms of the ADM series solution are as follows: 

14 17
3 3

0 8 8 8 8
3 3 3 3

2 4
3

8 8
3 3

3 27 271
4 36 68 56 24 56 44

3 811
24 72 4 616 952

u x

xx x xx

   

 

 
= − − + + − + + − −      

 
− − + − −       
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320 19 1722 227 39 3 39 3 133 3 3 3
1 16 2 16 2 216 16 162 2 2304 152340 ( ) 187 ( ) 561 3 ( )3 33 3 3 3 3 3

3 142364 13 3 13 18205 3
16 2 2 162 216 162 2243 3 ( ) 243 3 ( )11 ( ) 264 3 ( )3 3 3 33 3 3 3

u x x x x

x x

  

   

 
 
 = − + + + − +
        
 

 
  − + − + +
        
 

3
2455 4

16 24374 3 ( )3 3

x
 
 
  −
   
 

3 3 8112 291 6561 243 91 913 3
2 2 2 2 216 16 162 2 2 1 2396 3 ( ) 44800( ) 35200( ) 3( ) 216 3 ( )3 3 3 3 3 3 3 3

x x   
 
 
 − + − − + +
      −    
 

3 352 22187 81 182 182 910 33
2 2 2 2 16 216 162 2 1 2 2187 3 ( )6800( ) 5600( ) 3( ) 243 3 ( ) 3 33 3 3 3 3 3

x x   
 
 

+ + + − + + 
     −    

   

3 3
2 213 91 3640 455 2

2 2 16 162 216 162 2 243 3 ( ) 729 3 ( )2 3 ( ) 297 3 ( ) 3 3 3 33 3 3 3

x   
 
 − + + + − +
        
   

3
213851 351 99 81419 11479

2 2 16 16 2 216 162 2 2 2152 2495200( ) 61600( ) 5049 3 ( ) 16038 3 ( )3 33 3 3 3 3 3

   



+ − + − − + +
       

  

3
21820 910 3 22599 459 2

16 16 19 2 2 162 2 2 2243 3 ( ) 2187 3 ( ) 57761600( ) 246400( )3 3 3 3 3 33 3

3 3
2 2807781 213889 364 2275

2 2 16 162 216 161 2 27 3 ( ) 4374 3 ( )100980 3( ) 545292 3 ( ) 3 3 3 33 3 3 3

x   

   



+ − − + − + +
      


+ − − +
    −   

M   

Table 2 shows the approximate solution y(x) ≈ 
2

0
( )nn

y x
= for fractional equation (5.6) 

and the approximate solution u(x) ≈ 
2

0
( )nn

u x
= for differential equation (5.7) obtained by 

using ADM method have been plotted in Figure 2, where we note from the graphical 
results in Fig. 2, the approximate solution is in agreement with the exact solution present. 
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Table 2.The absolute errors of eq. (5.6) between the approximate values by ADM and the 
exact solution 

 

ix  

Exact solution ADM Absolute value Exact solution ADM Absolute value 
( )iy x  ny  ny y−  ( )iu x  ( )n iu x  nu u−  

1.0 1.07974 1.07974 2.22045 1610−  0.92614 0.926148 2.22045
1610−  

1.1 0.805387 0.805603 0.000215296 1.24164 1.24131 0.000331826 
1.2 0.616655 0.617607 0.000952025 1.62165 1.61915 0.00249974 
1.3 0.482581 0.484676 0.00209471 2.07219 2.06323 0.00895575 
1.4 0384726 0.388206 0.00347957 2.59925 2.57595 0.0232976 
1.5 0.31164 0.316629 0.00498875 3.20883 3.15827 0.0505579 
1.6 0.255955 0.262506 0.00655134 3.90694 3.80943 0.0975051 
1.7 0.212786 0.220916 0.00813003 4.69957 4.52662 0.172951 
1.8 0.178804 0.188514 0.00970963 5.59272 5.30466 0.28806 
1.9 0.15169 0.162979 0.0112894 6.59239 6.13574 0.456649 
2.00 0.129793 0.142671 0.0128787 7.70459 7.00911 0.69548 
 

 
 

 

 

 

 

Figure 2. comparing between approximate solution and exact solution 
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Example 3. Consider the nonlinear fractional Bernoulli equation with initial conditions: 

1
5

1
5

442
7 8 9 45

194
55

' 6'' ' 4 24 3 (5.10)
( )( ) x

y yy y D y y x x x x y
y

 
+ − + = − + − − + +     

 

subject to initial conditions: (1) 1, '(1) 3, ''(1) 12y y y= = − = , with exact solution
3( )y x x −=

. 

To find approximate solution for nonlinear equation (5.10) by applying ADM method, 

first, we reduce the Bernoulli equation to the linear equation by the transformation 
3u y −= , 

therefore the equation (5.10) will become to: 

1
5

442
7 8 9 5

2 19
5

63 72 9 3 (5.11)
( )

d u du D u u x x x x
dx dx

+ − − = + − −
  

Subject to the initial conditions:  (1) 1, '(1) 9, ''(1) 72u u u= = = . Consequently, the series 
solution for ( )u x by using the ADM described in [11,12,13] for this equation given by 

0
( ) ( )n

n
u x u x



=

= 
, therefore we have: 

( )1
5

44
1 7 8 9 1 1 15

19
5

6(1) ( 1) '(1) 72 9 3 3
( )

duu u x u L x x x x L D u L L u
dx

− − − −   = + − + + − − + − +      
 

(5.12) 

Consequently, we obtained the results approximate solutions for eq.(5.12) through the 
iteration formula of this equation which is given by:  

1
5

44
7 8 9 5

1 191 1 1 1
5

68 72 9 3 3
( )

x x x x n
n n n

duu x x x x x dxdx D u u dxdx
dx+

   = − + + + − − + − +      
   

 

(5.13) 

Hence, the following table 3 shows approximate solution y(x) ≈ 
2

0
( )nn

y x
=  for 

fractional equation (5.10) and approximate solution u(x) ≈ 
2

0
( )nn

u x
=  for differential 

equation (5.11) obtained by using ADM method have been plotted in Figure 3. 
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Table 3.The absolute errors of eq. (5.10) between the approximate values by ADM and the 
exact solution 

 
ix  

Exact 
solution 

ADM Absolute 
value 

Exact 
solution 

ADM Absolute 
value 

( )iy x  ny  ny y−  ( )iu x  ( )n iu x  nu u−  
1.0 1.00 1.00 0.00 1.00 1.00 0.00 
1.1 0.424098 0.425858 0.00176066 2.35795 2.3482 0.00974866 
1.2 0.193807 0.195561 0.00175446 5.15978 5.11349 0.0462905 
1.3 0.0942996 0.0954497 0.00115009 10.6045 10.4767 0.127775 
1.4 0.0484003 0.0490855 0.000685239 20.661 20.3726 0.28843 
1.5 0.0260123 0.0264186 0.000406317 38.4434 37.8521 0.591257 
1.6 0.0145519 0.0147993 0.000247394 68.7195 67.5707 1.14876 
1.7 0.00843257 0.00858869 0.000156122 118.588 116.432 2.15565 
1.8 0.00504136 0.0051435 0.000102139 198.359 194.42 3.939 
1.9 0.00309897 0.00316802 0.0000690475 322.688 315.655 7.03303 
2.0 0.00195313 0.00200115 0.0000480287 512.0 499.712 12.2882 
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Figure 3. comparing between approximate solution and exact solution 

 

Example 4. Consider the following nonlinear Fractional differential equation with initial 
condition: 

9
10

2
0.9

2 3 4 5 6 3
51 6141

10 10 10

''' ' 3!
(0.1)

5 5 5 360( ) ( 15) (3 ) (5.14)
96 6 288 6 48 ( ) 6 ( ) ( )

y yy y x D y
y

x x x x x y     

+ − = − +


 −
+ + − + + − − + +     

 

subject to initial conditions: (1) 1.07974, '(1) 3.32532, ''(1) 13.6594y y y= = − = , with exact 

solution 
3 2 1

24( ) ( )y x x x −= − , [1,2]x  . 

To find approximate solution for nonlinear equation (5.14) by applying ADM method, 

first, we reduce the Bernoulli equation to the linear equation by the transformation
2u y −=

therefore the equation (5.14) will become to: 

9
10

2
0.9 2 31

2 2

4 5 6
51 6141

10 10 10

5( ) ( )
96 6 288

5 5 360( 15) (3 ) (5.15)
6 48 ( ) 6 ( ) ( )

d u dux D u x x
dx dx

x x x

  

  

−

−
− + = + − +

+ + − − + +
    

Subject to the initial conditions:  (1) 0.85775, '(1) 5.28329, ''(1) 27.1114u u u= = = . 
Consequently, the series solution for ( )u x by using the ADM described in [13] for this 

equation given by 0
( ) ( )nn

u x u x

=
= , therefore we have: 

( )9
101 0.9 1

1 2 3 4 5 6
51 6141

10 10 10

(1) ( 1) '(1)

5 5 5 3602 ( ) ( 15) (3 )
96 6 288 6 48 ( ) 6 ( ) ( )

duu u x u L x D u L
dx

L x x x x x     

− −

−

 = + − + − − 
 

 −
− + − + + − − + +       

Consequently, we obtained the results approximate solutions for eq.(5.15) through the 
iteration formula of this equation which is given by: 

9
10 0.9 2 3

1 1 1 1 1

4 5 6
51 61411 1

10 10 10

( ) 5(1) ( 1) '(1) ( ) 2 ( )
96 6 288

5 5 3602 ( 15) (3 )
6 48 ( ) 6 ( ) ( )

x x x x
n

n n

x x

du xu u x u x D u x dxdx x x dxdx
dx

x x x dxdx

  

  

+

 − = + − + − − + −       
 

− + − − + +     

   

 
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Hence, Table 4 shows the approximate solution y(x) ≈ 
4

0
( )nn

y x
=  for Equation (5.14) 

and the approximate solution u(x) ≈ 
4

0
( )nn

u x
= for Equation (5.15) obtained by using 

ADM method has been plotted in Figure 4. It is to be noted that only the three iterations 
were used in evaluating the approximate solution for Fig. 4. 

 

ix  

Exact 
solution 

ADM Absolute 
value 

Exact 
solution 

ADM Absolute 
value 

( )iy x  ny  ny y−  ( )iu x  ( )n iu x  nu u−  
1.0 1.079741 1.0797411 0.000001 0.85775 0.85775 3.3395

710−  
1.1 0.8053872  0.80538723 0.00000003 1.54166687 1.54166679 8.1617

810−  
1.2 0.6166548  0.61665488 0.00000008 2.62975770 2.629757 4.9716

710−  
1.3 0.4825813 0.48258135 0.00000005 4.29397018 4.293969 9.2190

710−  
1.4 0.3847264 0.38472646 0.00000006 6.75609849 6.756097 1.3699 610−  
1.5 0.3116398 0.311639858 0.000000058 10.2966057 10.296604 1.8627 610−  
1.6 0.2559549 0.255954923 0.000000023 15.2641665 15.264264 2.4393 610−  
1.7 0.21278556 0.212785576 0.000000016 22.0859301 22.085927 3.18186 610−  
1.8 0.17880391 0.178803927 0.000000017 31.2785028 31.278499 4.29043 610−  
1.9 0.151689978 0.151689988 0.00000001 43.4596507 43.459644 6.52324 610−  
2.0 0.129792743 0.129792757 0.000000014 59.3607228 59.3607093 0.0000135429 
Table 4.The absolute errors of eq.(5.14) between the approximate values by ADM and 
exact solution 
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Figure 4. comparing between approximate solution and exact solution 

6. Conclusion 
   In this paper, the Adomian decomposition method has been successfully employed 
to obtain the approximate solutions of second-order the nonlinear fractional differential 
equation for the Bernoulli equation. Moreover, the results obtained in this research showed 
that the approximate solutions for this type of nonlinear fractional differential equations of 
the Bernoulli equation, which was obtained from this method are almost the same as the 
analytical solutions; in addition, the method is efficient, reliable, and computationally 
stable. 
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