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 ةيلضافتلا تلاداعملل ةيدلحا ةميقلا ةلكشلم ةيبيرقتلا لوللحا ةينادحو و دوجو
 Caputo قتشلما عم ةيرسكلا ليــــڤول مروتش

 دمحأ حلاص رمعم ةدیفم
 رايخ رصق مولعلاو بادلآا ةيلكب تايضايرلا مسق

 ايبيل - سملخا - بقرلما ةعماج
 :صخللما
 ليــــڤول مروتش ةلداعلم ةيدلحا ةميقلا ةلكشلم هتينادحو و بييرقتلا للحا دوجو ةسارد وه لاقلما نم فدلها 
 ـــــل هدرفت و للحا دوجو لوح تايرظنلا ضعب تابثإب انمق ثيح .خاـنب ءاضف في Caputo قتشلما عم ةيرسكلا

FSLP ـــــل ةتباثلا ةطقنلا ةيرظن عيسوتب انمق ثم نم و ODEs ةلكشم لمشتل Fractional Sturm-

Liouville تيــــقيرط يه و ةيبيرقتلا قرطلا ةطساوب بييرقتلا للحا ىلع لوصلحا ثم كلذ دعب و ،ةيدلحا طورشلا تاذ 
 .ةيرارــكتلا ىكـــسلسونسارك– نام و دراـــكيب

ABSTRACT 
In this paper, the researcher investigated the Fractional Sturm–Liouville boundary value 

problem with the Caputo derivative and studied the existence and uniqueness of its solution in 
Banach space, in addition to the continuation of its solution. As the result, researcher proved 

some theorems on the existence of solutions for FSLP and then extend a Fixed-Point theorem 
for ODEs to this of the Fractional Sturm–Liouville problem with boundary conditions. Also, 

the given problem by obtained via the constructing approximate solution by Picard and 
Krasnoselskij-Mann iterations. 

Keywords: Fractional Sturm–Liouville Problem, Caputo fractional derivatives, iterative 

methods, contraction and non-expansive mapping, Fixed-Point theorem. 

1. INTRODUCTION 
We consider the Fractional Sturm–Liouville differential problem with boundary conditions 

as following:  
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where , are denote the Caputo fractional derivatives, , 

set of all continuous functions from to with the norm , 

consequently, is a Banach space, and  is absolute 

continuous function on  with  for all are real 

constants,  is defined and differentiable on the interval , where satisfied 

Lipschitzian condition, i.e., there exist constant such that

for any , is Lipschitzian constant. 

The fractional calculus has allowed the operations of integration and differentiation fractional 
order. So,  (Machado et al., 2011) introduced the history of the fractional calculus, and the 

theory of fraction differential equations effected many by authors in mathematics, physics and 
engineering, (see the papers: [11,12,13,15,17,34,35,36]). The existence and uniqueness of the 

solution for fractional differential equations have been studied by authors in [4,6,7,10, 14,18, 
23,24,46,47]. (Abbas, 2011) discussed the existence and uniqueness of solution to fractional 

order ordinary and delay differential.  

(Pandey et al., 2020) presented the regular Fractional Sturm–Liouville Problem of order	, (0 <
, < 1) , where the authors was applying a fractional variational method to studying the 
Sturm–Liouville eigenvalues and eigenfunctions with the Caputo fractional derivatives. 

(Klimek et al., 2016) proved the existence of strong solutions for space-time fractional 
diffusion equations in bounded domain by using the method of separating variables that was 

depending on the Fractional Sturm–Liouville theory. (El-Sayed, 2019) studied the existence 
and uniqueness of a solution for a Sturm–Liouville fractional differential equation with a 

multi-point boundary condition via the Caputo derivative; existence and uniqueness results for 
the given problem are obtained using Banach Fixed-point Theorem. 

The problem of the existence and uniqueness of the solution for Fractional Sturm–Liouville 
have been considered by many authors; see results in [22]. (Klimek et al., 2018) discussed the 

exact and numerical solutions for the fractional Sturm–Liouville problem in a bounded 
domain. The derived Fractional Sturm–Liouville equations with corresponding boundary 

conditions contain the differential operator, which is a composition of the left and the right 
fractional derivative. 

Many authors studied these types of the Fractional Sturm–Liouville operators. For instance, 
(Klimek & Agrawal, 2012) investigated the eigenvalue and eigenfunction properties of both 

the regular and the singular Fractional Sturm–Liouville theory; in addition, (Klimek & 
Agrawal, 2013) defined Fractional Sturm–Liouville operators containing left and right Sturm–

Liouville, and left and right Caputo fractional derivatives. 
(Rivero et al., 2013) studied some of the basic properties of the Sturm–Liouville theory for 

fractional operators involving Riemann-Liouville, Caputo or Liouville fractional operators. 
(Ciesielski et al., 2017) introduced the developed numerical method for solving a fractional 

eigenvalue problem the version of the Fractional Sturm–Liouville problem with the 
homogeneous mixed boundary conditions. (Batiha et al., 2022) Purposed investigate the 

existence and uniqueness of solutions for generalized Sturm–Liouville and Langevin equations 
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formulated using Caputo–Hadamard fractional derivative operator in accordance with three 

nonlocals Hadamard fractional integral boundary conditions. 
On the other hand, the iteration methods of Picard, Mann and Ishikawa iterations are used to 

solving the problems for partial and differential equations.These iterative processes have been 
extensively studied and applied by many authors. Such as, ( Vasile B., 2004) presented a study 

was that stated that the iterative process of the Picard iteration converges faster than Man 
iteration. (Park, 1994) studied the Mann iteration process can applied to approximate the fixed 

point of strictly pseudo contractive mapping in Banach spaces. (Olaleru, 2009) investigated 
the convergence rate of the Picard, Mann and Ishikawa iteration when the operators are 

generalized contractive operators. Addition there are many study on the convergence theorems 
and stability problems in Banach spaces and metric spaces using the Mann’s iteration scheme 

or the Ishikawa’s iteration scheme (see, [8,9,31,33,39,41]). 
The rest of this article is organized as follows: In Section 2 & 3 we introduce some basic 

definitions and previously known results that, which will be used throughout this paper. In 
Section 4, we have given the main results, where we discussed the existence solution for 

Fractional Sturm–Liouville boundary value problem (1.1)-(1.2) and present two continuation 
theorems for FSLP, which are generalization of the continuation theorems for ODEs. 

2. PRELIMINARIES 
 In this section, we recall some basic definitions, notations and some properties about 

fractional calculus operators, based on the following books [5,11,12]: 

Definition 2.1.  Let and function . The left and right Riemann–Liouville 

fractional integrals operator and  of order of are defined by: 

 

 

respectively, provided the integral exists, where is the Euler gamma function, which is 

defined by . 

Definition 2.2. The left Riemann–Liouville fractional derivative of order 

of function denoted by  is defined by: 

 

Similarly, the right Riemann–Liouville fractional derivative of order  of 

function  denoted by is defined by: 

 

Definition 2.3. The Caputo derivative of order  for function  is given by: 

 

Provided the right side is positive defined on where with  
Remark 2.1. if , then Caputo derivative becomes  
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where . 

Definition 2.4. The left and the right Caputo fractional derivatives of order  are 

given by: 

 

Definition 2.5. Let be the space of the functions which are absolutely continuous 

on We denote by the set of the functions which have continuous 

derivatives up to order on such that .  
Remark 2.3. Let be the space of the functions which are absolutely continuous on

. We denote by the set of the functions which have continuous derivatives up 

to order on such that . In particular  

Definition 2.6.If f is absolutely continuous in interval [a, b], then the above Caputo fractional 

derivatives satisfy, almost everywhere on [a, b], the following relations: 
and  

Lemma 2.1. If , then the Caputo fractional derivative exists almost 

everywhere on , where is the smallest integer greater than or equal to . 

In the following, we recall some results for the fractional calculus operators. 
Proposition 2.1.Let and Then the following equations: 

and  
are satisfied almost everywhere in If function is continuous, then composition rules 

hold for all  

Proposition 2.2.Let and Then the following equations: 

   and  
are satisfied for almost all If function is continuous, then composition rules hold 

for all  

Proposition 2.3. If and then the following is true: 

and  
For almost all If function is continuous, then composition rules hold for all

 

Proposition 2.4. If  f  is continuous in interval [a, b] and , then: 

and  
Proposition 2.5.  Let . If is absolutely continuous in interval [a, b] (i.e.,

), then almost everywhere on : 

and  
Proposition 2.6. If and then the following are true: 
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almost everywhere on . 

Proposition 2.7. Let and ( and in the case when

. If and , then 

 

Proposition 2.8. Assume that , and , , then the 

following integration by parts formula  

 

holds. 

3. FIXED POINT THEOREMS IN BANACH SPACE 
Definition 3.1. [44,45] Let be a real Banach space, a nonempty convex subset of . Let 

be a mapping. Given an and a real number , the sequence

 defined by the formula: 

 

is called Picard's iterationin1890 [16], and the sequence defined by the formula: 

 

 is called the Krasnoselskij iteration, or Krasnoselskij–Mann's iteration is defined by[42]. 

Clearly, the Mann iteration (3.2) reduces to sequence , when , and 

(3.2) reduces to the Picard iteration for . 

For , the sequence defined by the following formula: 

 ,  
called the Mann's iteration, where is a sequence of real numbers satisfying the 

following conditions: 

 

Definition 3.2 [44,45,8] Let a nonempty convex subset of Banach space Then a mapping 

is said to: 

(i) Non-expansive mapping if 

        
 

(ii) Contraction mapping if 

 

where the constant is recall as Lipschitz constant of . 
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Theorem 3.1. If is a nonempty closed convex and bounded subset of a uniformly convex 

Banach space then any non-expansive mapping has a fixed point. 

Definition 3.3. Let and be two sequences of positive numbers that converge to  

respectively.  Assume that there exists the following limit 

 

(i) If , then it said that converge faster to  than to . 

(ii) If , then it said that and have the same rate of convergence. 

Definition 3.4. Suppose that we have two iteration sequences and both converging to 

a fixed point . Let and be two sequences of positive numbers, such that: 

 for all , 

 for all , 

where and converging to 0. If converge faster than in the sense of (Def.3.3),  

then is said to converge faster than to . 

Definition 3.5. If and are two iterative sequences that converge to the unique fixed 

point of , then converges faster than , if 

. 

Remark 3.1. For each and , we have that: 

. 
Consequently, we recall the basic fixed point iteration which appears in Banach contraction 

principle, that is Picard iteration:  for all , furthermore, for each ; we get 

the implicit Mann iteration:  

Theorem3.2.[42,43,9] Let a subset of Banach space and be a nonexpansive 

mapping. For an arbitrary , consider the Mann iteration process given by (3.3) 

under the following assumptions: 

(a) for positive integers n; 

(b)  for positive integers n;  

(c)  

If
 

is bounded, then as . 

Theorem 3.3.[48] Let a compact convex subset of a real Banach space , and 0be a 

nonexpansive mapping on . Let and define a sequence in by 

 

where is a sequence in the interval , such that and . Then

converges strongly to the fixed point of . 

We present the following corollaries of the Theorem 3.2. 
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Corollary 3.1. Let be a convex and compact subset of a Banach space and be 

a non-expansive mapping. If the Mann iteration process given by(3.3)satisfies 

assumptions (a)-(c) of Theorem 3.2, then converges strongly to a fixed point of . 

Corollary 3.2. Let be a real normed space, a closed bounded convex subset of and let 
be a non-expansive mapping. If maps closed bounded subset of into closed 

subset of and is the Mann iteration defined by(3.3) with satisfies assumptions(a)-

(c) of Theorem 3.2, then converges strongly to a fixed point of in  

Theorem 3.4. [3] (Banach’s Fixed Point Theorem). 
Let be a non-empty closed subset of a Banach space , then any contraction mapping of 

into itself has a unique fixed point, i.e. there exists a unique such that . 
Theorem 3.5. [3] (Schaefer’s Fixed Point Theorem).  
Let be a Banach space, and of  into itself a completely continuous operator. If the set: 

 

Is bounded, then has fixed point. 

Let be a Banach space and a subset of . An operator  is called compact if it 

is continuous and maps bounded subsets to relative compact sets. Below is the Schauder Fixed 

point theorem. 
 

 
Theorem 3.6. [32] (Schauder Fixed Point Theorem) 
Let be a closed bounded convex subset of a Banach space Assume that is 

compact. Then has at least one fixed point in  

4. MAIN RESULT 
We discuss the existence and approximate of solutions of Fractional Sturm–Liouville 

differential Problem (1.1) subject to boundary conditions (1.2) in the following lemma: 

Lemma 4.1. Let , and let are continuous 

functions, such that for all and are constants. A function

is a solution of the Fractional integral equation: 

 

if and only if is a solution of Fractional Sturm–Leoville boundary value problem (1.1)-(1.2).

 

Proof. Assume  satisfied (1.1) and (1.2), then by operating by  on both side equation 

(4.1), we obtain: 

 
Consequently; 
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when we get , subsequently, we get the 

following : 

 

where:  ; so:

 

 

we can rewrite the previous formula as the form: 

 

Theorem 4.1. Assume that the following conditions are satisfied:  

(H1) the function is continuous. 

(H2)There exist constants and  such that

for any and . There exist positive 

constant such that for all . If 

 

Then there exists a unique solution for Fractional Sturm–Louiville boundary value problem on
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Obviously, any fixed point of operator is solution for the problem (1.1)–(1.3). 

To prove that the operator has a fixed point, we should use the Banach contraction principle 

theorem. So, let . Then for ,we have 

 

Consequently, 

 

Consequently: 

 

Since and so by (4.6), we obtain is a contraction mapping on . As a consequence 

of Banach's fixed-pointTheorem 3.4 for operators deducible that the operator has a unique 
fixed point on which implies that the fractional Sturm–Louiville problem has a unique 

solution on . This completes the proof. 
Theorem 3.2. Assume that a function is continuous, and there exist a constant

such that for any and . There exist constants , 

such that for all , and if 

 

Then the Fractional Sturm–Louivilli differential equation with the boundary conditions has at 

least one unique solution on . 

Proof. We shall use the Schaefer's fixed point Theorem 3.5 to prove that defined by (4.7) 
has a fixed point. 

Firstly: we show that T is a continuous. Let  be a sequence such in . Then 

for each we have: 
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Consequently, by (4.10), we get: 

 

Since is continuous function and , as , and for each 

, so we have: and , then we have 

 

so: 

 

Therefore, for any , hence  is continuous. 

Secondly: maps bounded sets into bounded sets in ,it's sufficient to show that for 

any there exists a positive constant such that for each we have ; where

. Since is a continuous function, thus for each we have: 

 

Consequently 

 

Accordingly, is a bounded. 
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Thirdly: maps bounded sets into equicontinuous sets of . Let , 

according to previous step bounded subsets of , let 

then: 

 
Since , the right hand side of the above inequality tends to zero. As a consequence of 

steps 1 to 3 together with the Arzelá-Ascoli Theorem "which says a bounded and equicon-

tinuous sequence of functions on a compact has a uniformly convergent subsequence", then 

we can conclude that from into itself is completely continuous. 

Fourthly: A priori bounds. Now it remains to show that the set:
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Thus: 

 

This shows that the set is a bounded. As consequence of Schaefer's fixed point theorem, 

we deduce that has a fixed point which is a solution of the Fractional Sturm–Louiville 

boundary value problem (1.1) - (1.2). This completes the proof. 
Theorem 4.3.Assume that all the assumptions of Theorem 4.1,Theorem 4.2 are satisfied then 

the unique solution of the Fractional Sturm–Louiville boundary value problem (1.1)-(1.2) can 

be approximated by means of the Picard iteration defined by  arbitrary and 

 
Theorem 4.4. Assume that the following conditions are satisfied : 

1. The function is continuous. 

2. There exist constant  such that for any and 

.  

3. There exist positive constants such that for all , and if 

 

then the Fractional Sturm–Liouiville Boundary value problem (1.1)-(1.2)has at least one 

solution in , which can be approximated by the Krasnoselskij-

Mann iteration:

 

where , and is arbitrary. This completes the proof. 

Proof. If , then the conclusion follow similarly to [Theorem8, in 

2]. Therefore, we limit ourselves to the case where . 
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It follows that from [Lemma1, in 2]that is a non-empty convex and compact subset of the 

Banach space , where is the usual supremum norm. Consider the integral 

operator 

it's clear that is solution of boundary value problem for the Fractional Sturm-Liouiville 

problem (1.1)-(1.2) if and only if is a fixed pint of i.e., . 

We first prove that is an invariant set with respect to hence we have . 

Consequently, from pervious Theorems (4.1 &4.2), we can conclude that, for any ,one has

 

Now, for any , we have  

Thus,  for all .Therefore, In addition, we conclude that is self-mapping of 

i.e., and is completely continuous. 

Let . Then for , then we have 

 

Consequently: 

 

According to condition (4.23), proves that is non-expansive mapping. As a consequence of 
Schauder fixed-point to obtain that the operator has a unique fixed point on which implies that the 

fractional Sturm-Louiville boundary value problem has a unique solution on and by applying 

Corollary 3.1 or 3.2 we get converges strongly to a fixed point of in . This completes the 

proof. 
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