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ABSTRACT

In this paper, the researcher investigated the Fractional Sturm—Liouville boundary value
problem with the Caputo derivative and studied the existence and uniqueness of its solution in
Banach space, in addition to the continuation of its solution. As the result, researcher proved
some theorems on the existence of solutions for FSLP and then extend a Fixed-Point theorem
for ODE:s to this of the Fractional Sturm—Liouville problem with boundary conditions. Also,
the given problem by obtained via the constructing approximate solution by Picard and
Krasnoselskij-Mann iterations.

Keywords: Fractional Sturm—Liouville Problem, Caputo fractional derivatives, iterative
methods, contraction and non-expansive mapping, Fixed-Point theorem.

1. INTRODUCTION

We consider the Fractional Sturm—Liouville differential problem with boundary conditions
as following:

—D (p () Du ) () +q (o) 4/ (e au(x)) =0 (L)
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au(@) -+l (p*Diu)l,, (x)=0 (1.2)

Bu®)+ B, (pDiu)l,y (x)=0
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1 . o
where 5 <a<l,’D?,°D; are denote the Caputo fractional derivatives,u(x)eC (/,R)

a+?

C (I,R)set of all continuous functions from/to R with the normHu Hw =sup{u(x):x el},

consequently, (C (1,R),

||w)is a Banach space,p(x)eC'(I,R)andg(x)>0 is absolute
continuous function on / =[a,b] withp(x)>0 for all x el,e,,p ,i =1,2are real

constants, f :I xR —> R is defined and differentiable on the interval [, wheref satisfied
Lipschitzian condition, i.e., there exist constantL > 0 such thatHf (e,u)—=f (x,v )H SLHu -V H

forany X €/, u,y eC(I,R), L is Lipschitzian constant.

The fractional calculus has allowed the operations of integration and differentiation fractional
order. So, (Machado et al., 2011) introduced the history of the fractional calculus, and the
theory of fraction differential equations effected many by authors in mathematics, physics and
engineering, (see the papers: [11,12,13,15,17,34,35,36]). The existence and uniqueness of the
solution for fractional differential equations have been studied by authors in [4,6,7,10, 14,18,
23,24,46,47]. (Abbas, 2011) discussed the existence and uniqueness of solution to fractional
order ordinary and delay differential.

(Pandey et al., 2020) presented the regular Fractional Sturm—Liouville Problem of order 4 (0 <
u < 1) , where the authors was applying a fractional variational method to studying the
Sturm—Liouville eigenvalues and eigenfunctions with the Caputo fractional derivatives.
(Klimek et al., 2016) proved the existence of strong solutions for space-time fractional
diffusion equations in bounded domain by using the method of separating variables that was
depending on the Fractional Sturm—Liouville theory. (El-Sayed, 2019) studied the existence
and uniqueness of a solution for a Sturm—Liouville fractional differential equation with a
multi-point boundary condition via the Caputo derivative; existence and uniqueness results for
the given problem are obtained using Banach Fixed-point Theorem.

The problem of the existence and uniqueness of the solution for Fractional Sturm—Liouville
have been considered by many authors; see results in [22]. (Klimek et al., 2018) discussed the
exact and numerical solutions for the fractional Sturm-Liouville problem in a bounded
domain. The derived Fractional Sturm-Liouville equations with corresponding boundary
conditions contain the differential operator, which is a composition of the left and the right
fractional derivative.

Many authors studied these types of the Fractional Sturm—Liouville operators. For instance,
(Klimek & Agrawal, 2012) investigated the eigenvalue and eigenfunction properties of both
the regular and the singular Fractional Sturm—Liouville theory; in addition, (Klimek &
Agrawal, 2013) defined Fractional Sturm—Liouville operators containing left and right Sturm—
Liouville, and left and right Caputo fractional derivatives.

(Rivero et al., 2013) studied some of the basic properties of the Sturm—Liouville theory for
fractional operators involving Riemann-Liouville, Caputo or Liouville fractional operators.
(Ciesielski et al., 2017) introduced the developed numerical method for solving a fractional
eigenvalue problem the version of the Fractional Sturm-Liouville problem with the
homogeneous mixed boundary conditions. (Batiha et al., 2022) Purposed investigate the
existence and uniqueness of solutions for generalized Sturm—Liouville and Langevin equations
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formulated using Caputo—Hadamard fractional derivative operator in accordance with three
nonlocals Hadamard fractional integral boundary conditions.
On the other hand, the iteration methods of Picard, Mann and Ishikawa iterations are used to
solving the problems for partial and differential equations.These iterative processes have been
extensively studied and applied by many authors. Such as, ( Vasile B., 2004) presented a study
was that stated that the iterative process of the Picard iteration converges faster than Man
iteration. (Park, 1994) studied the Mann iteration process can applied to approximate the fixed
point of strictly pseudo contractive mapping in Banach spaces. (Olaleru, 2009) investigated
the convergence rate of the Picard, Mann and Ishikawa iteration when the operators are
generalized contractive operators. Addition there are many study on the convergence theorems
and stability problems in Banach spaces and metric spaces using the Mann’s iteration scheme
or the Ishikawa’s iteration scheme (see, [8,9,31,33,39.,41]).
The rest of this article is organized as follows: In Section 2 & 3 we introduce some basic
definitions and previously known results that, which will be used throughout this paper. In
Section 4, we have given the main results, where we discussed the existence solution for
Fractional Sturm—Liouville boundary value problem (1.1)-(1.2) and present two continuation
theorems for FSLP, which are generalization of the continuation theorems for ODEs.
2. PRELIMINARIES

In this section, we recall some basic definitions, notations and some properties about
fractional calculus operators, based on the following books [5,11,12]:

Journal of Humanitarian and Applied Sciences - 4siudaillg ASLuYI pglall dloxe !

Definition 2.1. Leta >0and functionf:R" —R. The left and right Riemann-Liouville
fractional integrals operator / “ and /,” of order o € R" of f  are defined by:

I°f (x )—?)J‘ (x S) f(s)ds x €(a,b] (2.1

I f (x )—mj( —x) f(s)ds x €la,b) (2.2)

respectively, provided the integral exists, whereI'(.)is the Euler gamma function, which is
defined by I'(«) = th “le™'dt .
Definition 2.2. The left Riemann—Liouville fractional derivative of order ¢ e R" (0<ax <1)
of functionf denoted by D/ f is defined by:

Df (x)=DI “f (x), Vx e(a,b] (2.3)
Similarly, the right Riemann—Liouville fractional derivative of orderax € R (0 <« <1) of
functionf denoted by D . f 1s defined by:

DS f (x)=-DI,°f (x), Vx €la,b) (2.4)
Definition 2.3. The Caputo derivative of order « for function f* :R* — R is given by:
n—a-1
Dif (x)= j (x=s) [ “(s)ds (2.5)

Provided the right side is positive deﬁned onSR *wheren e Nwith n —1<a <n.
Remark 2.1.if @ =n € X, then Caputo derivative becomes “D“f (x ) =1 " (x).

Remark 2.2. If f (x ) e C"[0,o0], then
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SU6) o~ prep o, (2.6)

c a _ 1 X
D0+f (x ) B r(n _1) J.O (x _S)a+1—n

wherex >0,n—1<a<n.
Definition 2.4. The left and the right Caputo fractional derivatives of order (0 <« <1) are

given by:
‘D.f x)=D.lf (x)=f(a)], Vxe(ab] (2.7)
‘D f x)=D[f (x)=f (B)], Vx €[a,b).
Definition 2.5. Let 4 C[4,b]be the space of the functions s which are absolutely continuous
on[qa,b].We denote A C"[a,b]by the set of the functionsy which have continuous
derivatives up to order n —lon[q,p]such that £ *™" e 4C[a,b].
Remark 2.3. Let 4 C[0,1]be the space of the functions s which are absolutely continuous on
[0,1]. We denote 4 C "[0,1] by the set of the functions /', which have continuous derivatives up
to order n —lon[o,1]such thatf "™ e 4 C[0,1]. In particular 4 C'[0,1]= AC[0,1]

Definition 2.6.1f f'is absolutely continuous in interval [a, b], then the above Caputo fractional
derivatives satisfy, almost everywhere on [a, b], the following relations:

‘Def(x)=1"f (x)andD/f (x):=~1,f (x)
Lemma 2.1. If /' € AC"[0,1], then the Caputo fractional derivative“D “f (¢ )exists almost
everywhere on[q,b ], Where, is the smallest integer greater than or equal to ., .
In the following, we recall some results for the fractional calculus operators.
Proposition 2.1.Let o, g > 0andf € L” (a,b), (1< p <o0).Then the following equations:
I:+[aﬁ+f (x)= [aa:ﬁf (x )and[baflbﬂf (x)= [bajﬂf (x)
are satisfied almost everywhere in[q,5].If function f is continuous, then composition rules
hold for allx e[a.b].
Proposition 2.2.Let0 < g < andf € L”(a,b), (1< p <0).Then the following equations:
DAILS () =157f (x) and DTS (x)=17"F (x)

are satisfied for almost all x < [«,5].If function f is continuous, then composition rules hold
forallx e[a,b].
Proposition 2.3. If o > 0andf € L”(a,b), (1< p <o0).then the following is true:

DiILf (x)=f (x)and D 1] f (x) =1 (x),
For almost all x e[a,b].If function f* is continuous, then composition rules hold for all
x €la,b].
Proposition 2.4. If f is continuous in interval [a, b] and & > 0, then:

‘DyILS (x)=f (x)and“ DI f (x) =/ (x)
Proposition 2.5. LetO<a <1. If f is absolutely continuous in interval [a, b] (i.e.,
f €ACla,b]), then almost everywhere on [4,51]:

15D (x)=f(x)=f(@and ] D] f (x)=f (x)—f b).
Proposition 2.6. If f € L'(a,b)and 1°f ,1,°f € AC[a,b],then the following are true:
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a-1
acna X —a _
12D () =f (1) - S rrer (o),
['(a)
17 Def @) =f )-8 lar oy,

M) "
almost everywhere on [4.5].
Propesition 2.7. Leta>0,p >1,g>1and -+, <1+a(p=landg =1in the case when

s+i<l+a).Iff el”(a,b)andg € L (a,b), then

b b
[ f CMlig oy = [ g f ()
Proposition 2.8. Assume thatO<a <1,/ e 4C[a,b]andg € L (a,b),1 < p < o, then the
following integration by parts formula

b b x =b
[ £ eDsg@)dx = gDy f (x)dx +f () Lg ()|
holds.
3. FIXED POINT THEOREMS IN BANACH SPACE

Definition 3.1. [44,45] Let E be a real Banach space, K a nonempty convex subset of £ . Let
T :K — K be a mapping. Given an x, €K and a real number 2 [0,1], the sequence

{x ,} € K defined by the formula:

x,,=Ix, n=0,12,.. 3.
is called Picard's iterationin1890 [16], and the sequence {x , } defined by the formula:
x,,=1-A)x, +ATx , n=0,12,.. (3.2)
is called the Krasnoselskij iteration, or Krasnoselskij—Mann's iteration is defined by[42].
Clearly, the Mann iteration (3.2) reduces to sequence x ,, = %(T (x,)+x,), when 4= %, and

(3.2) reduces to the Picard iteration for 4 =1.
Fory , € K , the sequence {y, } K defined by the following formula:
Vou=0=4)y,+ATy, ,n=0,1,.. (3.3)
called the Mann's iteration, where A, —[0,1]is a sequence of real numbers satisfying the
following conditions:
1. 4 =1
2. 0<A <LVneN

3. z/ln =00

Definition 3.2 [44,45,8] LetK a nonempty convex subset of Banach space £ . Then a mapping
T :K — K is said to:
(i) Non-expansive mapping if
||Tx —Ty||£||x —y||‘v’x,y ek
(i) Contraction mapping if
”Tx =Ty ||SL ||x —y”‘v’x,y ek

where the constant L is recall as Lipschitz constant of 7" .
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Theorem 3.1. If K is a nonempty closed convex and bounded subset of a uniformly convex
Banach space E then any non-expansive mapping 7' : K — K has a fixed point.
Definition 3.3. Leta, andb, be two sequences of positive numbers that converge to a,b

Journal of Humanitarian and Applied Sciences - 4siudaillg ASLuYI pglall dloxe !

respectively. Assume that there exists the following limit
a, +a] l
=, 40|

(1) If /=0, then it said that {an }converge faster to , than {b" }to b.

(i) If 0</ <oo, then it said that {4 }and {p, }have the same rate of convergence.
Definition 3.4. Suppose that we have two iteration sequences {x , jand{y  }both converging to
a fixed point p . Let {g, }and {p } be two sequences of positive numbers, such that:

d(x,,p)<a, foralln eX,
d(y,,p)<b, foralln eN,
where {q, }and {5 } converging to 0. If {q, }converge faster than {5, }in the sense of (Def.3.3),
then{x  }1s said to converge faster than {) top.
Definition 3.5. If {x }and{y lare two iterative sequences that converge to the unique fixed
point p of 7", then {x  }converges faster than{y 1,if
lim £ _ g,

noed(y,,p)
Remark 3.1. For eachx |y .z  E and 4 [0,1], we have that:

d(Z 9W (xay 92)) = (l—ﬂ)d(z,y)—ﬂd(z,x)-
Consequently, we recall the basic fixed point iteration which appears in Banach contraction
principle, that is Picard iteration: x,,, =Tx, foralln e X, furthermore, for eachn e N ; we get

the implicit Mann iteration: x ., =W (Ix ,x ,,,).
Theorem3.2.[42,43,9] Let K a subset of Banach space £ and T : K — K be a nonexpansive
mapping. For an arbitrary y, € K , consider the Mann iteration process {y }given by (3.3)

under the following assumptions:
(a) y, €K for positive integers 7;

(b) 0< 4, <b <1 for positive integers n;

(©) D4, =+

If {y,}is bounded, theny -7y —Oas, . .

Theorem 3.3.[48] LetK a compact convex subset of a real Banach space £, and Tbe a
nonexpansive mapping onk . Let y ; € K and define a sequence {y 1inK by

yllJrl:(l_Zn)yn-l_ﬂ"nTyn, n:0,1,2,...
where 4, is a sequence in the interval [0,1], such thati A, =oandlimsup, 4, <1. Then { yn}

converges strongly to the fixed point p of 7" .
We present the following corollaries of the Theorem 3.2.
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Corollary 3.1. LetK be a convex and compact subset of a Banach space £ andT : K — K be
a mnon-expansive mapping. If the Mann iteration process{y |given by(3.3)satisfies
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assumptions (a)-(c) of Theorem 3.2, then{y | converges strongly to a fixed point of 7" .

Corollary 3.2. Let £ be a real normed space, K a closed bounded convex subset of E and let
T :K — K be a non-expansive mapping. If]/ -T maps closed bounded subset of E into closed
subset of £ and {x }is the Mann iteration defined by(3.3) with {2 }satisfies assumptions(a)-

(c) of Theorem 3.2, then {x  } converges strongly to a fixed point of 7" inX.

Theorem 3.4. [3] (Banach’s Fixed Point Theorem).

LetK be a non-empty closed subset of a Banach space £ , then any contraction mapping 7" of

K into itself has a unique fixed point, i.e. there exists a unique x € K such that 7x =x .

Theorem 3.5. [3] (Schaefer’s Fixed Point Theorem).

Let £ be a Banach space, and ' of E into itself a completely continuous operator. If the set:
e={y eF:.:y=AFy, forsome A€(0,1)}

Is bounded, then F has fixed point.

Let £ be a Banach space and K a subset of £ . An operator T : K — E is called compact if it

is continuous and maps bounded subsets to relative compact sets. Below is the Schauder Fixed

point theorem.

Theorem 3.6. [32] (Schauder Fixed Point Theorem)
LetK be a closed bounded convex subset of a Banach space £.Assume that T :K =K is
compact. Then 7 has at least one fixed point inK .

4. MAIN RESULT
We discuss the existence and approximate of solutions of Fractional Sturm-Liouville
differential Problem (1.1) subject to boundary conditions (1.2) in the following lemma:

Lemma 4.1. Let/ =[a,b], %<a£1and letp:1 >NR,q:1 >NR,r:1 ->Rare continuous

functions, such that p(x) >0, r(x)>Ofor allx e/ and ¢, , B, ,i =1,2 are constants. A function
U is a solution of the Fractional integral equation:
u(r) =u(a) + OO ey g [L, (w47 . u(r»)j @
pl(a+1) p()
if and only if U is a solution of Fractional Sturm—Leoville boundary value problem (1.1)-(1.2).
Proof. Assume U satisfied (1.1) and (1.2), then by operating by/,” on both side equation

(4.1), we obtain:
~(PC) D ) () + 1 q (e () +1f (6 u(x) =¢ (42)
Consequently;
~(pG)* DL ) ) +11 (g () +f (s.u(s))) =¢
Furthermore, since p(x ) >0 then:

Diutx)=— )r( )j( =) (q(shu(s)

4.3
) (4.3)
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whenx =bwe geth:u(b)— ) =pb)Dub), c*=—c, subsequently, we get the
following :
D)= [ ) (g ) f (s s+ 22 D0 (4.4
1°°Dfu(x)=1" (WJ( —x)"(q (S)“(S)Jrf(S,M(S)))dSJfM]

p(a)%u(b)j+ (
p(x) pOOF(@)

u(r)=u(@)+ p(@) DLu ). (#jﬂi (; [ (s =5) (gl ms)f (s.u(s )))ds]

u<x>|x_a=1;:( [ =) (g )4/ ) ]

p(x) p()[(a)
where: “Du(b)=-20X)_ g,
Bpb)al ()
“(x>=u(a>+ﬂl(”"‘)a”(b>[ 1 j“x—t)“-ldf]
paTl(@) \T(@ p()

+$f (v~ [p(t )lr(a) [ 6= aou)+f s ))]dsjdt

we can rewrite the previous formula as the form:

e [$I <q<r>u<r)+f(tu(r>))j 45)

u(x)=u(a)+

Theorem 4.1. Assume that the following conditions are satisfied:
(H)) the functionf : 1 xR — R is continuous.
(H>)There exist constants L >0and0< L <1 such that

‘f Oc,u, () —f (c,uy(x ))‘ <L ‘“1 —uz‘for any u,,u, €C(I,R)andx €/ . There exist positive
constant Q such that ‘q (¢ )‘ <Qforallx el If

1 (-1
O I'(a+])
Then there exists a unique solution for Fractional Sturm—Louiville boundary value problem on

I.

Proof. Transform problem (1.1)-(1.2) into a fixed point problem, thus, consider the operator
T :C(,R)—>C({,R)defined by:

T“(X)=u(a)+’81(b _x)a”(b)( ! r (r -0 dt]
Bl () () (1)

a=@+L)Ia+[ (4.6)

+$LX (x —t)al[p(t)lr(a) Lb (s =)"[g(shu(s)+f (S,u(s))]dsjdt 4.7)
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Obviously, any fixed point of operator 7" is solution for the problem (1.1)—(1.3).
To prove that the 7" operator has a fixed point, we should use the Banach contraction principle
theorem. So, letu,,u, eC(I,R). Then forx €/ ,we have

Journal of Humanitarian and Applied Sciences - 4siudaillg ASLuYI pglall dloxe !

[T, () =Ty (x)] < IH[ ()( (gl @) =y O] +]f (50,0 ) ~f s, uz(t))|))j (4.8)

Consequently,

ITul(x)—TMQ(x)ISli[ﬁ(&“_( >||u1<t>—u2<t>|+L|u1<r>—u2<r>|))]

<1a( (% «Q+Lﬂu0)zhaﬂ»] (4.9)

e[Sy

‘Tul(x )—Tu,(x )‘ < 0””1 —uzuw
Since 0 < o <1and so by (4.6), we obtain7 is a contraction mapping on/ . As a consequence

of Banach's fixed-pointTheorem 3.4 for operators deducible that the operator 7" has a unique
fixed point on/,which implies that the fractional Sturm—Louiville problem has a unique

Consequently:

solution on/ . This completes the proof.
Theorem 3.2. Assume that a functionf :7 xR — R is continuous, and there exist a constant

M >0such thatHf (x,u)HSM for any u eC(I,R)andx . There exist constants Q >0,
N > Osuch that <Qforall t €l ,andif

((b (t)) J N (4.10)

Then the Fractional Sturm—Louivilli differential equation with the boundary conditions has at
least one unique solution on/ .

Proof. We shall use the Schaefer's fixed point Theorem 3.5 to prove that 7" defined by (4.7)
has a fixed point.

Firstly: we show that T is a continuous. Let {un} be a sequence suchy >y inC (/,R). Then

for eachx €1 e have:

1
~Tu(x)| <18 —(1%
[Tu, () ~Tu(x)| a+pt)( (i

<17 %[[f (| t)||u (t)-u(t |+Sup[f(s u, () -1 (s, u(t))|)jj

<1 pzt)[ff ((QIun(t) u(t |+SUPI/’(SM E)=f s, u())mD

t)

b, O -u (O] (.00, 0)~ (s,u<t>>|))J
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)Tt} 12 1 [0 -w. o 6,007 ) an

=ull, 5., )~ )], )1 [(b I)J

(0
“T(a+)) p)

Consequently, by (4.10), we get
|Tun(x) Tu(x )|

1)( S =ull, +f G, @) =f su@)], )N (4.12)

Since £ is continuous functlon andu eC(/,R),u, »uas n — oo, ande (x ,u)” <M for each

x el ,sowe have'uf s, “<M and Uf (s,u (t))” <M , then we have

[P, () -Tu )], < 1)( L], Hf s, @) =f u )], )V
1
‘r(a+1)( , —u, +f (s, O, +|f u@)], )N (4.13)
1
Sl"(a+1)(Q +2M )N
SO:
[T, () =Tu(x)|, < 1)( L+2M N —0as n o0 (4.14)

Therefore,Tu €C (I,R) for any u eC (/,R), hence T' is continuous.
Secondly: T maps bounded sets into bounded sets inC (/,*R),it's sufficient to show that for

any & > 0 there exists a positive constant/ such that for eachy e _we have HT (u )HOO < ; where

Q =ueCU,N): Hu H < &}. Since f is a continuous function, thus for each X €/ we have:

pl®) ‘
7w (x )| <|u(a)| + BT@+]) L = JH [ () (|q(t)||u(t)|+|f(tu(t))|)j
ﬂl|u(b)| (b-x)” ( 1, j
< 1| —1I M 4.15
@l @y | pe | e @ M) (19
B lu (b)l (b-x)"
O @ | e (Q”M)[“*[namp(t)}

Bilu®)| N +(Q5+M)N

< |u (a)| +
BI(a+]1) INa+1)

Consequently

fu®) \  (Qe+M)
||Tu(t)||o0 Su(a)-i—ﬂzar(a)N + Tt N =1,

Accordingly, T is a bounded.
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Thirdly:T maps bounded sets into equicontinuous sets of C(/,R). Letx ,x,el,x, <x,,
according to previous stepQ) ={u eC(/ ,fR):Hu Hm < &tbounded subsets of C(I,R), let

u € Q_,then:

|:|ﬂlu(b)(b_x)a[ 1 JXn(x —t)aldtj

ITM(XI)_TM(XZ) ﬂzr(a_{_l) (@)’ p(t)

+$J.:I(x —t)a—l(p(t)lr(a) J.,b (s —1)"" (q(s)u(s)+f (s,u(s)))dsjdt

Bu®)b-x)"( 1 [ -0 w16
pl(a+l) \I(a)* p@)

_ﬁj‘:l(x —t)*! [p(t)lr(a) j,b (s —1)“" (q(s)u(s)+f (S,M(S)))ds ]dt

|Tu(x )=Tu(x )|<[’)1|u(b)”(b —x)a | sz “ _t)a—l )
DT T Fae ) (@) pl)

U G
Tk €0 (po)r(a)

ARONO -V 1 e ) (@etM) e bty
ITu(x,)~Tu(x,) < STas] [F(a)-LI 0 dt]+ o j (x =) (m]m (4.18)

Since x, — x,, the right hand side of the above inequality tends to zero. As a consequence of

steps 1 to 3 together with the Arzela-Ascoli Theorem "which says a bounded and equicon-
tinuous sequence of functions on a compact has a uniformly convergent subsequence", then
we can conclude that 7' fromC (/,%R)into itself is completely continuous.

Fourthly: A priori  bounds. Now it remains to show that the set:
Q,,=ueQ, u=AT (@) for some0<A<I}, is bonded. u eF then u = AT (u)for some
0 < A <1. Thus, for each x €/ we have:

U(X)=ﬂu(a)+/w1”(b)(b ‘X)a[ 1 J'x (x —t)*" dt]
Bl (a+]) [(a)’  p(t)

[ =0 (lg@) )], +1f (.66 |)dsjdr (4.17)

-I-%J‘: (x —t)“l(p(t);(a) Lb (s —l‘)a—l[q(s)u(s)+f (s,u(s))lds ]dt @19)
consequently:
|u(x)|=‘zu<a)+‘ﬂ1“<b><b —x)“[ Ll -1)" dt]
Bla+l) \T(@)* p()

PPN
Tk & [p(t)rw)

Since 0 < 4 <1, and from previous steps we get:

(4.20)

J-{b (s —z)a—1[q(s)u(s) +f (s,u(s))ds ]dz
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,31|u(b)| “
BT (a+1) ( p(x) JH [ @’ (|q(t)||”(t)|+|f(’“(t))|)j

B |u(b)| N +(Q5+M)N
Al(atl)  T(a+l)

|Tu (x )| < |u (a)|

<lu(a)|+ (4.21)

Thus:

fu®)  ,Qe+M)
||Tu(t)”°°£u(a)+ﬂ21“(a+l)]v+ fasl) N =1,

This shows that the setQ, ;is a bounded. As consequence of Schaefer's fixed point theorem,

we deduce that 7" has a fixed point which is a solution of the Fractional Sturm—Louiville
boundary value problem (1.1) - (1.2). This completes the proof.

Theorem 4.3.Assume that all the assumptions of Theorem 4.1,Theorem 4.2 are satisfied then
the unique solution of the Fractional Sturm—Louiville boundary value problem (1.1)-(1.2) can
be approximated by means of the Picard iteration «, defined byu, e Q3 arbitrary and

uiays PO u®)( 1 -0
U, (x)=u(a)+ Bal () [F(Q)L 20 dz] )

*ﬁf x —t>“‘1[ p(t)lr(a) J =0 h, 6047 s, (s))]ds]dz v eln=0,l..

Theorem 4.4. Assume that the following conditions are satisfied :
1. The function f : 1 xR — R is continuous.

2. There exist constant >0 such thatV (c,u, (X)) —=f (x,u,(x ))‘ <L ‘“1 —MZ‘for any x €[ and
u,u, €C{,N).
3. There exist positive constants O > Osuch that ‘q (x )‘ <Qforall x €l ,and if
1 &

a:@+L)1;+( (1)1(“(05+)1)J 1 (4.23)
then the Fractional Sturm—Liouiville Boundary value problem (1.1)-(1.2)has at least one
solution #inQ_ ={u €C(I,R): Hu”oo < &}, which can be approximated by the Krasnoselskij-
Mann iteration:

o wBb=x)Yubd)( 1 px-t)"
i, (0) ==, (x)+ pu(a)+ S T (F(a) j ) dt] (4.24)

/,l * a-1 1 b a-1
+@L b [p(t)r(a)ﬁ(s‘t) [‘I(S)"n(S)+f(S,un(s))]dsjdt n=0,1,..

wherex €/, e (0,1)and 4, e Q_is arbitrary. This completes the proof.

Proof. If (0 +1)7° L G-t <1, then the conclusion follow similarly to [Theorems8, in
“{p@) T(a+1)

2]. Therefore, we limit ourselves to the case where (Q + )7 ( 1L G-t J
“Np@®)T(a+1)
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It follows that from [Lemmal, in 2]Jthat() is a non-empty convex and compact subset of the

Banach space (C (I,R),]|. ||OC), where ||.||_is the usual supremum norm. Consider the integral
operator T:Q —>C{,R)

Tu(x)=u(a)+ﬁfj?o({bjl)li[(bp_(z))a]+l ( 2) (q(r)u(r)+f(tu(z)))J xel (425

it's clear thaty e Q3 is solution of boundary value problem for the Fractional Sturm-Liouiville
problem (1.1)-(1.2) if and only if U is a fixed pint of 7" ,i.e.,u =Tu .

We first prove thatQ is an invariant set with respect to7 ,hence we have 7(Q,)cQ,.
Consequently, from pervious Theorems (4.1 &4.2), we can conclude that, for anyy e Q_,one has
Tu(x)eQ, ,x 1.

Now, for any x ,x, e/l,x, <x,, we have

Bu®NG-x)|( 1 @) ) QM) i B-1)
ITu(x,)~Tu(x,)|< as] [F(a) j 0 dtj+ ) j (x -1) (—F(aH)p(t)]dt (4.26)

Thus, Tu e, for ally e Q_.Therefore, In addition, we conclude that 7" is self-mapping of

Q_,ie, T :Q_ — Q_andis completely continuous.

Letu,y €Q_. Then forx €1, then we have

[Tu () =T ()| <12 (%(1;_ (g Ol @) @)+ L) (t)|))]

<I* (%(1:_ (©+L)ki)-v (z)|))] (4.27)
S(Q+L)I“[ L G-t j|| .

) T(a+])

Consequently:

[T, (x )T, (x )| S o, _”2Hw
According to condition (4.23), proves that 7" is non-expansive mapping. As a consequence of
Schauder fixed-point to obtain that the operator 7" has a unique fixed point on / , which implies that the
fractional Sturm-Louiville boundary value problem has a unique solution on/ and by applying
Corollary 3.1 or 3.2 we get {u ”}converges strongly to a fixed point of 7" inQ) . This completes the
proof.
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