
ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(125)

Improving Cache Hit Rate Using The Control Flow Graph

Musbah Mohammed Elahresh Abedelatie Ali Elaraby
 Department of post graduate studies Department of Electrical and Computer Engineering
College of Electronic Technology, Tripoli±Libya Elmergib University, Alkhoms±Libya
 E-mail:Algab1402@gmail.com Email: Alatie2001@yahoo.com

Abstract

This paper provides a technique for designing a cache control unit that speeds up program execution
time. This feature is highly required for modern computers to enhance system performance and efficiency. The
technique focuses on solving the problem of cache misses by utilizing the control flow graph of the program
behavior during its loading from the main memory and executing from the cache by the processor.The proposed
cache control unit performs its task in two stages that work in parallel. These stages are implemented by the
following circuits:
1- Loader circuit that loads program blocks from main memory into cache lines.
2- Replacement circuit that manages the cache lines by placing the coming program blocks into the proper

cache lines and performing the replacement without misses.
This solution required that a program has to be logically partitioned according to its control flow graph into

basic blocks with one exit point. This results in variable-sized program blocks to be loaded into the cache. There
by in the cache there exists a block with its two successors blocks. The selection of next block to be executed
from these two successors depends on the condition of the exit point of the parent block (taken or not taken
branch). Thus always the next block to be executed is available in the cache. The design of the loader circuit and
the replacement circuit are given in details and their functionalities are simulated. Program partitioning and the
relations between program blocks are assumed to be collected from other job in a form of profile data. This data
is used by the proposed circuit to control its operations and synchronizing its functions.

I. INTRODUCTION
Computers nowadays play an important role in our everyday life. Many factor increases the people to

depend in computer. One of these factors is its performance represented by the speed of programs execution.
Many technique where developed and are still used to enhance computer performance. One of these techniques
is the use of cache memory of small capacity and less access time. This introduced many techniques and
methodology to map program block between the main memory and the cache memory and which blocks should
be available in cache for the processor to execute next. All that solutions utilize which so called locality
principles.[1][2]

As it is known any program has many execution paths. The program blocks and the execution paths are
modeled by what is so called Control Flow Graph CFG. Nodes of the graph represent the program blocks and
the edges represent the execution paths [5].The solution of the above mentioned problem is based on portioning
the program into blocks of fixed number of exit points. In this paper the implementation of the hardware circuit
of cache memory management unit is introduced and simulated.

II. CFG Example
Consider the following of code:
Program Control Flow Graph

x = z-2 ;
y = 2*z;
if (c) {
x = x+1;
y = y+1;
}
else {
x = x-1;
y = y-1;
}
z = x+y;

Figure (1) Control Flow Graph Example

T

B1

B3 B2

B4

Entry Block

Exit Block z = x+y;

x = x+1;
y = y+1;

x = x-1;
y = y-1;

B4

B2

B1

F

x = z-2;
y = 2*z;

if (c)
B3

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(126)

In this example, we have 4 basic blocks in particular, in this case, B1 is the "entry block ", B4 the " exit block
".A graph for this fragment has edges from B1 to B2, B1 to B3, B2 to B4, and B3 to B4 as shown in figure (1).

Possible execution =path in the graph

Possible Execution 1: Possible Execution 2:
± c is true ± c is false
± Program executes ± Program executes
- basic blocks B1, B2, B4 - basic blocks B1, B3, B4

A. CFG Profile Representation

Start: starting address in maim memory.
End: end address in maim memory.
Pos: index in CFG data structure of the next block if jump is taken, if jump is not taken then follow next record.

B. CFG Organization

CFG organization conceptually a binary tree and physical as a graph.

Figure (2) CFG A Binary Tree

The tree is chosen to represent the control flow graph since each basic block has at most two

successors; one is entered by a control transfer instruction and the other one is the continuation block (next
adjacent block followed in the main memory).[5]
D. Cache Organization
Blocks are staff in the cache start root, level one right, left and level two right , left , etc.., of the binary tree from
7 nodes tree.

Figure (3) CFG Cache Organization

At first load = saturation

Next only 4 blocks are loaded, 2 for each sub tree. Staff here from the right left and last one position B0

B0 B1 B2 B3 B4 - - - BN-1

Start End Pos Record

000 0 B0 root
001 1 R0 Level

one 010 2 L0
011 3 X

Level
two

100 4 Z
101 5 Y
110 6 W

X1 X2 Y1 Y2 Z1 Z2 W1 W2

X Y Z W

R
0

L
0

B
0 righ

t
left

Buffer
address

Physical
address data

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(127)

III. Functional Units

The general block diagram is illustrated in Figure (6) below

Figure (4) General Block Diagram for CFG Cache Organization

This block diagram shows idea for replacement and loader blocks from main memory to the cache memory.
Execution program is divided into blocks, CFG profile contains these address blocks. At first start program
execution, CPU loads these blocks in main memory, loader mechanism loads address for the needed four blocks
(right or left sub tree) to main memory, main memory loads these block to the cache memory in free location,
and at the same time the replacement mechanism provides free location in the cache. All needed execution
blocks are ready in cache memory previously by loader mechanism.

CFG profile
memory

Windows Loader
Replacement
Mechanism

SRAM (7 BLOCKS)
CACHE CPU

Main
Memory

instru
ction

bl
oc

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(128)

III. Load Mechanism

This circuit used to load mechanism is illustrated in figure (5) below, this part is used to load address
blocks from CFG profile to main memory.

Taken/not taken

CE10

CE4

CE3

CE5

CE2

CE9

CE1

Address to
main memory

ALT_OUTBUF_TRI

inst2

ALT_OUTBUF_TRI

inst2

ALT_OUTBUF_TRI

inst2

ALT_OUTBUF_TRI

inst2

ALT_OUTBUF_TRI

inst2

ALT_OUTBUF_TRI

inst2

8 X 8 MULTIPLEXER

SEL
A[7..0]
B[7..0]

Y[7..0]
2x8mux

inst3

OR
2

ins
t4

U
P LO

AD LIM
IT

CO
U

N
TER

START

ENABLE

END

2

5

1

3

4

6 7

8

9

START END POS B0
START END POS B1
START END POS B2

START END POS Bn-1

START END R0

next

CLRN

D
PRN

Q

DFF

inst

CLRN

D
PRN

Q

DFF

inst

LO

CLRN

D
PRN

Q

DFF

inst

Figure (5) The Loader Mechanism Circuit

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(129)

IV. Loader Circuit Operation
When the program start execution , CPU load blocks for program from CFG to main memory

and load address for these block in CFG profile.

The load circuit operate is illustrated in flow chart in figure (6) below.

Figure (6) Flow Chart For Load Circuit

YES NO

CE10=1, CE3=0

Up load limit counter enable

Send address to main memory (first block)

CE4=1, CE10=0

Send address to main memory (second block)

Load address for next block (X2)

CE10=1 ,CE4=0

Load address for next block (Y)

CE5=1,CE10=0

Up load limit counter enable

Load address for next block (Y1)

CE3=1, CE5=0

CE10=1, CE3=0

Up load limit counter enable

Send address to main memory (third block)

CE4=1, CE10=0

Send address to main memory (fourth block)

Load address for next block (Y2)

CE10=1, CE4=0

Load address for next block (R0)

CE9=1,CE10=0

Up load limit counter enable

Start

Load address B0 to CFG profile

CE1= 1

Load address for next block(R0)

IF taken
Load address for first block in left sub

tree (L0)

Load address for first block in right sub
tree(R0)

CE2= 1, CE1=0

CE3=1, CE2=0

Load address for next block (X1)

Load address for next block(X)

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(130)

V. Replacement Mechanism

This circuit used in replacement mechanism is illustrated in figure (7) below.

Figure (7) The Replacement Mechanism Circuit

A
N

D
2

in
st

3

Rw for cache free address for cache

Rd for main memory

rd

address

digital circuit
(O

dd)
digital circuit

(Even)

New address

taken/ not taken

Control circuit

Current block next block

6

5

4

3

2

1

filter Counter 0-6

address

0

1datab[]

sel

dataa[]
result[]

BUSMUX

inst3

PISO

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(131)

VI. Replacement Circuit Operation
The main idea for the operation replacement circuit is shown in figure (7). It converts
addresses 1,3,5 to 0,1,2 and saves its contents, because it can be used in the future, and
addresses 0,2,4,6 are converted to 3,5,4,6 and considered free position. We reload it by new
data from main memory if the control signal is taken. If the control signal is not taken, the
proposed replacement circuit converts addresses 2,4,6 to 0,1,2 and saves its content because
it can be used in the future. And the addresses 0,1,3,5 convert to 3,5,4,6 and considered free
position. We reload it by new data from main memory. The replacement circuit operate is
illustrated in flow chart in figure (8) below

Figure (8) Flow Chart for Replacement Circuit

NO

NO

YES

YES

YES NO

Start

IF taken

Replacement address in even digital circuit

Load address for cache to digital circuit

Read current block (location zero in the cache)

Replacement address in odd digital circuit

Load new address to PISO register

Load first address from PISO to the cache

IF address
3,4,5 or 6

Read block from M.M (buffer)
 from this address

Write this block to the cache
 in this address

Increment counter

Is counter =6

Counter=0

Load next address from
 PISO to the cache

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(132)

Results and Discussion

In figure (9), path of execution in red color (path 1), current block transfers from B0
to R0, which means the branch is taken and the window is shifted to right on the tree and odd
logic circuit converts addresses 0,1,2,3,4,5,6 to 3,0,5,1,4,2,6 and blocks B0,L0,Z,W are
replaced with new loaded blocks X1,X2,Y1,Y2. In the next step, current block transfers from
R0 to Y, the branch is not taken and the window is shifted to left on the tree and even logic
circuit converts addresses 3,0,5,1,4,2,6 to 4,3,6,5,1,0,2 and blocks R0,X,X1,X2 are replaced
with new loaded blocks Y3,Y4,Y5,Y6. In the next step, current block transfers from Y to Y1,
the branch is taken and the window is shifted to right on the tree and odd logic circuit
converts addresses 4,3,6,5,1,0,2 to 4,1,6,2,0,3,5 and blocks Y,Y2,Y5,Y6 are replaced with
new loaded blocks Y7,Y8,Y9,Y10. In the following, current block transfers from Y1 to Y4,
the branch is not taken and the window is shifted to left on the tree and even logic circuit
converts addresses 4,1,6,2,0,3,5 to 1,5,2,0,3,4,6 and blocks Y1,Y3,Y7,Y8 are replaced with
QHZ�ORDGHG�EORFNV�<���<���<���<���$QG�HWF«

Figure (9) Binary Tree Represents The Control Flow Graph

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(133)

Table (1) CFG profile information

Block
Address

Block
Name Start End

Jump Block
Address

Block
Name

Start End
Jump Block

Address
Block
Name Start End

Jump
NEXT NEXT NEXT

0 B0 200 210 48 65 Y30 « « « 158 X10 « « «
1 66 159

1 L0 500 510
25
2 75 Y19 « « 239 168 X3 « « 319

2 W 580 590 14 76 169
3 76 Y28 « « « 169 X8 « « «

3 W2 610 620 179 77 170
4

4 W6 690 700 « 86 Y5 351 360 249 179 W5 670 680 «
5 87 180

 87 Y12 411 420 «

14 W1 590 600 189 88 189 W3 630 640 280
15 190

15 W4 650 660 290 97 Y1 261 270 109 190 W8 730 740 «
16 98 191

16 W10 770 780 « 98 Y4 341 350 259
17 99 199 Z5 « « «

 99 Y10 860 870 310 200

25 Z 520 530 37 100
26 209 Z3 « « «

26 Z2 560 570 199 109 Y3 300 310 133 210
27 110

27 Z6 « « « 110 Y8 820 830 122 219 Y21 « « «
28 111 220

 111 Y18 « « 269
The result obtained from execution program for the replacement circuit by ModelSim-Altera
6.1g (Quartus II 7.2), is illustrated in figure (10) below.

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(134)

Figure (10) Simulation for Replacement Circuit

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(135)

(a)

The result obtained from execution program for the loader circuit by ModelSim-Altera 6.1g
(Quartus II 7.2), is illustrated in figure (11 a,b) below.

 (b)

(C)

Figure (11 a ,b) Simulation for Loader Circuit

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(136)

The table below (2) shows new address for cache memory after transferring current block
from B0 to Y10 (Path 1).

Table (2) Cache Memory Status When Execute Path1

VII. Summary of Results
After the designing odd logic circuit and even logic circuit and testing it and

evaluating by ModelSim-Altera 6.1g (Quartus II 7.2), the results obtained from simulation are
equal to the predicted results. These results are illustrated in table (2), and when testing the
detection circuit and comparing the results obtained from simulation with the predicted
results, we have the same results. These results are illustrated in figure (10). After that, we
connect these circuits with each other by multiplexer and parallel input serial output (PISO)
register, and testing it many times for random paths. These circuits always give the same
predicted results. This circuit is connected to cache memory and main memory to get
replacement circuit in figure (7). After design all parts in complete circuits, The testing,
evaluating and investigating the loader circuit in figure (5) by ModelSim-Altera 6.1g (Quartus
II 7.2), and when comparing between the predicted results in the table (2) with the obtained
results from simulation in experment1 for loader circuit in figure (10), equal results are
obtained. And when testing, evaluating and investigating the replacement circuit in figure (7)
by ModelSim-Altera 6.1g (Quartus II 7.2), and when comparing between the predicted results
in table (2) with the obtained results from simulation in experment1(path1-red color) for
replacement circuit in figure (10), equal results are obtained.

address cache address cache address cache

address cache address cache address cache

Taken

B0
R0
LO
X

Z

Y
W

0
1
2
3

4
5
6

NEW

NEW

NEW

NEW

X1
R0
X2
X

Y1
Y

Y2

3
0
5

1

4
2
6

4
3
6
5

1
0
2

Y5
Y3
Y6
Y4

Y1

Y
Y2

NEW
NEW
NEW
NEW

Y9
Y3

Y10
Y4

Y1

Y7
Y8

4
1
6
2

0
3
5

NEW

NEW

NEW
NEW

1
5
2
0

3
4
6

Y9
Y20
Y10
Y4

Y19
Y21
Y22

NEW

NEW

NEW
NEW

NEW
NEW

NEW

NEW

5
6
0
3

4
1
2

Y38
Y40
Y10
Y37

Y39
Y21
Y22

Not taken Not taken

Taken Not taken B0 R0 Y

Y1 Y4 Y10

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(137)

VIII. Conclusion
During the work on this paper the previous techniques used for cache memory

mapping and replacement strategies were surveyed to highlight their functionalities,
capabilities and limitations for minimizing cache misses. It was found that all those
techniques work on the principles of locality: Spatial locality and temporal locality. Those
two principles do not put into account the prediction of next block to be loaded into the cache
and the next block to be entered and executed. This results in that each technique works good
with some programs to minimize cache misses and poor with other programs. This depends
on the nature and structure of the program being executed.

 By utilizing the behavior of a program represented by its control flow graph, a new
technique for cache memory mapping and replacement is proposed. Its corresponding digital
circuit was designed and simulated. The circuit consists of two parts that work in parallel. One
part performance the task of loading program blocks from the main memory into the cache
lines. The other part performance the required replacement. The circuit was simulated using
Verilog hardware simulation language and tested using Quartus II 7.2. The results obtained
from the simulation verified the proposed idea and it was found that always there exist in the
cache successor blocks organized as a binary tree. This eliminating processor wait states and
hence a program is executed continuously without cache miss.

REFERENCES: [1]
[1] Ranjith Subramanian, Yannis Smaragdakis, Gabriel H. Loh; " Adaptive Caches";

IEEE Computer Society Washington, DC, USA, 2006.
[2] Jim Handy; " The cache memory book (2nd ed)" ; Academic Press, Inc. Orlando,

FL, USA, 1998.
[3] Steven A. Przybylski; " Cache and Memory Hierarchy Design" ; Morgan

Kaufmann (30 Jun 1990).
[4] Y. Thomas Hou , Jianping Pan; " Analysis and evaluation of expiration-based

hierarchical caching systems " ; Elsevier Science Publishers B. V. Amsterdam, The
Netherlands, The Netherlands, 2004.

[5] Malek M. Kream; " The Impact Of Program Control Flow on Cache
Performance"; M.Sc. Thesis , Academy of Higher Study; Tripoli-Libya, 2008

[6] Wei Ding, Mahmut Kandemir, Diana Guttman, Adwait Jog, Chita R. Das, Praveen
Yedlapalli , Trading Cache Hit Rate for Memory Performance, Department of
Computer Science and Engineering , The Pennsylvania State University, University
Park, Pennsylvania, USA, 2014.

[7] W. Ding, J. Liu, K. Mahmut, and M. J. Irwin, \Reshaping cache misses to improve
row-bu_er locality, in multicore systems," In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 2013.

[8] J. Meza, J. Li, and O. Mutlu, \Evaluating row bu_er locality in future non-volatile
main memories,"SAFARI Technical Report, 2012.

[9] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu, \Row bu_er
locality-aware data placement in hybrid memories," SAFARI Technical Report,
2011.

[10] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.
Lee, A. Lenharth, R. Manevich, M. M_endez-Lojo, D. Prountzos, and X. Sui, \The tao

http://portal.acm.org/author_page.cfm?id=81341497129&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895
http://portal.acm.org/author_page.cfm?id=81100614708&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895
http://portal.acm.org/author_page.cfm?id=81100364307&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895
http://www.amazon.co.uk/Steven-A.-Przybylski/e/B001K7Y954/ref=ntt_athr_dp_pel_1
http://portal.acm.org/results.cfm?query=Name%3A%22Y%2E%20Thomas%20Hou%22&querydisp=Name%3A%22Y%2E%20Thomas%20Hou%22&termshow=matchboolean&coll=GUIDE&dl=GUIDE&CFID=78876986&CFTOKEN=11361895
http://portal.acm.org/author_page.cfm?id=81100485207&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895

ΔόϣΎ˰˰˰˰˰Ο�Ώϗέϣϟ΍���ΔϳϠϛ�Ώ΍Ωϵ΍�ϡϭϠόϟ΍ϭ�έλϗ�����������έΎϳΧϷ΍�
ΔϠΟϣ�ϡϭϠόϟ΍�ΔϳϧΎγϧϹ΍�ΔϳϣϠόϟ΍ϭ�ΔϳϋΎϣΗΟϻ΍ϭ�

΍�ϭϳϧϭϳ�αϣΎΧϟ΍�ΩΩόϟϮϬϭϴ

Elmergib University ��� Faculty of Art & Science KasrKhiar
Journal of Humanitarian, Scientific and Social Sciences
5th Issue June 2018

�

(138)

of parallelism in algorithms," In Proceedings of the Conference on Programming
,Language Design and Implementation., 2011.

[11] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt, \Dram-aware last-
level cache writeback: Reducing write-caused interference in memory ,systems,"
HPS Technical Report, 2010.

[12] Y. Kim, D. Han, O. Mutlu, and M. Harchol-balter, \ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers," In
Proceedings of the International Symposium On High Performance Computer
Architecture, 2010.

[13] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-balter, \Thread cluster memory
scheduling: Exploiting di_erences in memory access behavior," In Proceedings of
the International, Symposium on Microarchitecture, 2010.

[14] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, \Complexity e_ective memory access
scheduling for many-core accelerator architectures," In Proceedings of the
International Symposium on Microarchitecture, 2009.

[15] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Cas_caval, \How much
parallelism is there in irregular applications?" In Proceedings of the ACM
,SIGPLAN symposium on Principles and practice of parallel programming, pp. 3{14,
2009.

[16] Static Analysis for Fast and Accurate ,Design Space Exploration of Caches, Yun
Liang, Tulika Mitra, Department of Computer Science, National University of
Singapore, {liangyun,tulika}@comp.nus.edu.sg, 2008.

[17] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning, Low Overhead
Replacement Cache. FAST, 2003.

[18] Sing, Joel. Computer Technology ± Cache Memory.
http://ironbark.bendigo.latrobe.edu.au/subjects/int11ct/2002/lectures/l17/cache.html

[19] Hamid R. Zarandi, Seyed Ghassem Miremadi; " Hierarchical Multiple Associative
Mapping in Cache Memories " IEEE Computer Society Washington, DC, USA 2005.

[20] Stephen Hines, David Whalley, Gary Tyson; " Guaranteeing Hits to Improve the
Efficiency of a Small Instruction Cache" ; IEEE Computer Society Washington, DC,
USA ,2007.

http://ironbark.bendigo.latrobe.edu.au/subjects/int11ct/2002/lectures/l17/cache.html
http://portal.acm.org/author_page.cfm?id=81100608777&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895
http://portal.acm.org/author_page.cfm?id=81100100608&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895
http://portal.acm.org/author_page.cfm?id=81100296923&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895
http://portal.acm.org/author_page.cfm?id=81100126209&coll=GUIDE&dl=GUIDE&trk=0&CFID=78876986&CFTOKEN=11361895

