Journal of Humanitarian, Scientific and Social Sciences
Elmergib University — Faculty of Arts and Sciences Kasr Khiar
4" Tssue December 2017

COMPUTATION OF HYPERGEOMETRIC FUNCTIONS

DAVID M LEWIS HISHAM ZAWAM RASHDI
Department of Mathematics, Department of Mathematics
University of Liverpool, the UK, Faculty of Arts and Sciences,
D.M.Lewis@liverpool.ac.uk Elmergib University, Kasr Khiar,Libya,

heshamalzowam(@yahoo.com

Abstract
This research explored some methods for computing the hypergeometric function which
can in some cases be difficult to find quickly and accurately. It has found that some softwares,
such as Maple, are of little use in such instances. So, in this case, this research highlights a
method to compute a special case of the hypergeometric function which is
. . 2
®(a,c,z)= CD(E—Z,E, T x
4 22

)in a very fast time compared with the Maple.

Keywords: hypergeometric function.

Introduction
The calculations of the hypergeometric function ,F, of mathematical physics are often

required in many branches of applied mathematics. Despite the importance of this topic, this is
sometimes a very hard in practice. The main reason for this is that the function has the
complicated structure which produces many interesting mathematical intricacies. The research
will focus on computing one of commonly used hypergeometric functions which is
Fi(a;c;z) = ®(a;c;z), which is also called Kummer’s function as discussed by Abramowitz and
Stegun (1972) [1]. Then, It will define the saddle point of a contour integral because it will help
to improve the method of solution. In the next section, the research discusses estimation the
confluent hypergeometric function using saddle point. The Maple software will be used to
compute this function. Therefore, the aim of this research is to find a quick and easy method in
which we can calculate the values of this function which is a reliable for many different
variables. We shall be especially concerned with the case when the magnitude of a and z are
large, when special asymptotic formulas have to be developed.
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1 Asymptotic expansion of integrals
1.1 The confluent hypergeometric (Kummer’s function)

There are many functions defined as special cases of the general confluent
hypergeometric function | F|(a;b;z), including the incomplete gamma function, Modified Bessel

functions and Laguerre polynomials as they are suggested by Abramowitz and Stegun (1972)
[1]. The research shall be investigating the regular solution (at z=0) often denoted by

M(a,b,z) (as opposed to U(a,b,z) the irregular solution) of Kummer’s differential equation.
d2
d 2

+(b- z)cji—Jraw 0. (1)
/4

Formally M(a,b,z) is defined by 1 where M (a,b,z) is given by

(a),
M(a,b,z)= Z(b)
_1.9 a(a+1) , @)

z z
b b(b+1)2!
where a,b andz € C(b # 0,—1,—2,-3, ..., —n;n € N) which is detailed in [1].

The target of this research is not just to use the series 2, but also to find a method to
compute this function using Maple without using the intrinsic function of Maple

(hypergeom([a), [b], z)).This special function in Maple can calculate the hypergeometric
functions in some cases, but sometimes we find that the Maple routine is very slow. This is
particularly true when |a| or |z| are large compared to |b|. However, to begin research shall
consider how M (a,b,z) can be calculated directly using the series 2. This series is solved by
writing code in Maple which calculates the value of the series from s =0 to n and termination
occurs when Maple gets a very small relative error.

1.2 Example
Compute the hypergeometric function using the series 2 if we have:

(). a=150I,b=166.0 and z=1.11
(ii). @=150001,b=166.0 and z =10000.17 .

(/ means that the number is complex number).

[ =)
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where accurate to a relative error of ¢ =0.00000001 by:
(a) Method of Series (Code A).
(b) Using Maple’s intrinsic function, and then compare the solution in both cases.

First case(i): by the Code A, research has got that the value of the confluent
hypergeometric function =[0.369003792014086—0.00122244630148484/] where n=12

which means that it has taken 12 steps to find the solution with this relative error. By using the
intrinsic function in Mapli. Hypergeom( [1501], [166.0], 1.1/ ) = [0.369003791936315 —
0.001222446257505521]. If we compare the two solutions, it is clearly that the relative error

quite low which is equal just —4.4x107"'7 .
In the second case (ii), the research had found that the solution can not be found by the

series method because the condition {M:%} >1 has not been achieved in the code (Code A).

While Maple have taken more than two minutes (exactly 132.63s) to calculate the
hypergeometric function. For this reason, research will find another method to compute the
hypergeometric function.

2 Saddle points and method steepest descent
Consider the following integral:

I(t)= J.:g(x)e"w")dx. 3)

Here a and beE R ,a<b, t e R, t > 1, and g(x),4(x) are real valued (g(x) could be € C)
b
functions with g(x) defined as that I | g(x)| dx <o (basically the integral /() will exist).

Also, g(x) does not contain an exponential term. What research need is a way of obtaining a
quick and easy estimate for /(#), with an error term which declines quickly as ¢ gets large. This

can be done using the Saddle Point Method of steepest descent, as discussed by Bender and
Orszag (1999) [2].

2.1 Saddle points
The first step is to replace x by z € C and consider /(¢) as a complex integral around

some suitable complex contour C.
()= I Cg(z)e”“”dz.

Now assume ¢(z) is a well behaved multi-differentiable, analytic function of C. Applying
Taylor’s Theorem about a point z =z, gives :

H2) = P(z0) +(z =2 (20) + @qﬁ”(zo) F0z-z). ()

[ =)
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A saddle point of a complex function ¢(z) is a point z =z, where ¢'(z,)=0. Suppose

z =z, 1s saddle point. Then near z = z,, use integral behaves like:

. (Z‘Zo)2 "
it[¢(z, )+T¢ (zp)]

10~ [ g)e

neurq)

dz. (5)
The problem with our original integral:

1(0)= [ g(x)e"*dx

= [ (cosleg )]+ isinltg(0))g (x)dx, ©)

is that as r — oo the "™ oscillates faster and faster but does not get any smaller. This
means that we have to consider integrating over the whole interual to x €[a,b] to estimate 7(z).
If [a,b] is large, such as if b — oo this will be a lengthy process, even for a computer. In the case
[a,), we also have to worry about how g(x) —0 as b — o to ensure the integral converges.

This may happen quite slowly.

The advantage of the saddle point (steepest descent method) is that it localizes the
behaviour of the integral around z =z, (Bender and Orszag 1999)[2]. This makes the integral
much easier to estimate. To do that we will consider:

it(zfzo)2 .
ith(z, — —¢#"(zy)
1(t) = " g(z)e ? 0
0

nearz,

dz, (7)

and assume ¢''(z,)>0 (the case ¢"(z,) <0 is easy to deal with change % to % in what
follows). To make things easier, assume z; € R and let C, = path in the complex plane (see

figure 2.1) such that: C(z) =>z=2z,+ &iz, 0 €(—R,R).

Real Line

1
: v 0 4
Complex Plane

Figure 2.1: The graph of real line and complex plane.

i

[ =)
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+

Clearly this path pases through z =z, when ¢ =0. Along this path we have:

it (z-20)? (s
e 20) #'(20) i% it(i62)¢ (20)
g(2)e =g(z,+0e*)e

T ~ 2 ¢”(20)

—gzy+& e * . (®)

Therefore, the integral for C, will be:

I(t)= '[Cl g(z)e""9dz

iz+it¢(20)jR d —t62¢ S

gz +se e 2 do ©)

= e i
—t52 ¢”(Zo)
The function e 2 dies off very rapidly as |0| gets large. This means that the IC dz is
1

localised to the area very close to z=_z,. The path z=z, +&* is called Path of Steepest

it(zfzo)2 .
. . — 9"z .. .
Descant, and along this path, the function e 2 " dies off most rapidly. Such steepest

descent paths are always associated with saddle points. So, the integral /(¢) along C, is given by

—t52 ¢”(Z())

s ok 2 g ()[4 |
1= "> E (202'[59 Lo s
k=0 :

il (2 )

ilg(zo) + 1!!\/;g”(20)[e3i4]2 + 3!!\/;g(4)(20)[fi4]4 +...

14" (z,)? 21(t¢"(2,))° 4(t4"(2,))°
V2 V2 V2

~
~

[ i @k = DU (z)] 2% (z,)
e T P (10)
2

This is because we have the fact which is:

[ =)
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—1\
©2n+k —pxz — M Z if k:()’
Lox e dx 2p) p (11)
0 if k=1.

Provided [t¢"(z,)/2] is large, the series 10 will consist initially of rapidly decreasing terms the

value of N 1is used to truncate the series when the terms start to increase. Hence, to first order
the integral 9 along C, will be

1 +0(z)] T

(1) N (12)

2.2 Contour Integrals
The integral 3 can be solved by using the saddle point, as stated in [2, 3]. This will be
done by forming the path of integration as in the figure 2.2.

Real Path

Figure 2.2: Contour of integration in equation 14.

Assuming the function g(z) has no singularities, we can invoke Cauchy’s Theorem. Thus:

Jj_J.cl_J.cz_J-Q:O' (13)

Therefore:

[ s )
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I(t)= '[C1 2(2)e"dz + Icz 2(2)e"Vdz + IC3 g2(2)e"Vdz (14)

Typically the integrals C, and C, are smaller than the integral along C, because they do not
pass through any saddle points of @¢(z). In which case

IC2 and L3 ~% compared to Ll ~ %

b : 1 +th(z, Vi 1
(0)=[ g(x)e"*dx ~e $G)\on H (15)

2.3 Example
Suppose one has the integral

it(x2—2x)

100 ¢
[ “5——dx  fort=10,100,1000,...
0 x"+1

Here ¢(x)=x"—2x, and g(x)= which is well behaved, and dies off sufficiently

x”+1
rapidly for this integral to exist. So this integral will be estimated by using the saddle point
method.

P(x)=x>-2x=¢'(x)=2x-2
=2x-2=0=>x=1
= z, = 11s thesaddle point
=¢"(z,)=2
So near z, =1 using Taylor’s Theorem 4 gives ¢(z)=—1+(z—1)". Set up a steepest descent

path C,(z) > z=1+ 5@17 through z=1. Then near z=1

=g(2)= x21+1 ~ % soalong C,

i (R 52+ "
dx=—e I e 4do.
2 _r

[+ )
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Finally, the result for the integral /() will be

7it+i\/;
/ 4
(O PP A — (16)

2t

Now the result 16 will be used to compute the hypergeometric function 2 from #=10 to
40. The Maple has used to compute the result 16 to find the relative error in the approximation

from 1 =10 to 40 between the result 16 and the solution by integration directly in Maple. In

this case, Maple has found the integration hard and had taken a long time to compute it when ¢
got large. On the other hand, with the result 16, Maple has computed the integral much faster, as
will be shown. If we run the code B in Maple, we will get the result as in the table 1 which

shows some values from that result. Note that 7 means calculate the time difference between the
time for the first solution by the result 16 and the time for the second solution by the integration
directory in Maple, and ¢ is the percentage of error between the two solutions.

There are some special cases that have gotten in the table 1. For example, the biggest
relative error was when #=11. Then, the percent of error decreased step by step until =25
where in this value of ¢, Maple has taken the biggest time to compute the the hypergeometric

function (7 =11.123_). Suddenly, Maple can not compute the hypergeometric function when

t = 26,27 and 28 (where the result 14 has computed these values very fast). Therefore, some
testes have made for these values to make Maple computing them as shown in the code B. In

another case, the smallest relative error was when ¢=29. After that, Maple continues to
compute the values until # = 40.

The figure 2.3 shows us the values of [¢] with the time [7'] which is clearly that the time

for computing the hypergeometric function has increased as ¢ gets large, where the figure 2.4
shows that the relative error has decreased as ¢ gets large.

[ =)
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Table 1: The table of some values of ¢ with times [7'] and relative error [&].

t Time taken (7, )(seconds) &

10 2.777 18.96956394%
11 4.212 20.73015085%
25 11.123 12.21783312%
26 5.585 9.981694228%
29 6.209 0.1729691650%
40 6.006 7.007588679%

Time values

LA
YV A

ER wvalues

10 20

t values

Figure 2.3: Values of [¢] With Times [7T].

tvalues

30 40

Figure 2.4: Values of [¢] with relative error ¢.

However, if the code B will run with values of ¢ bigger than 40 (for example #=60),
Maple may not be able to compute the integral. Therefore, section 3 will find another method to

compute the hypergeometric function for large values of ¢.

[»)
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3 Estimating the Confluent Hypergeometric Function Using Saddle Points

3.1 The analog of Euler’s formula

it 3
The confluent hyper-geometric function ®(a,c,z)= @(Z—% > lﬂj x

important role in the evaluation of the Hardy function Z(¢#) which gives the amplitude of

) plays an

. : e 11 |
Riemann’s zeta function along the critical line z = 5 +it.

it ima’x
Let us look how we might evaluate the more general function CD(E__’q

2
t € Rand a € R are assumed to be large parameters and also [t| > g, |a| > q, q€Rand ¢g>0

). Here both of

(for simplicity we can assume ¢>0 and 7<0 1is a simple generalisation). The series
representation of

%104 x

- (@t Xy
g_zt ima’x 2 2
CI)(2 21 )= Z;‘ (q)ssl (7

is totally useless. It would take millions of terms to even make the number start to get
smaller if both ¢+ and « are large. Consider some other method which will be Euler’s integral
formula for the confluent hyper-geometric function and it is given by:

I'(c)

P o)

Iezx (a— 1)(1 x)(c a- l)dx

where Re(c)> Re(a)>0 and Re(c)=gq and Re(a)= % which is detailed in [2, 3]. Hence

it zmxzx
(——— )
4
I'(q) it (q,z,) 2
= ” € 4 (1-x)% 2% dx (18)
rd-2 )r(q )

The respective Gamma functions are well understood and can be calculated quite easily
in Maple, using the famous Sterling’s series for I'(z), which is valid for large | z|. So the key to

find an estimate for ®(— —z, q, i
2 2 4

) is the integral:

[ =)
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.2 .
im“x (q_i_) t—l)

fe (1-x)2"2"ax (19)

0

Firstly, let us split up the range of the integral into two parts, x € (O,%)U(é,l). Then for

the second integral make the substitution,

y=(1-x)=x=l-y=dx=—dy (20)
zmzx 2757 q it
:>I1€ ( )(1 )(2 5
2
imz(l—y) q_it_; q gf
:J‘fe 4 ( )(2 2 D ( 1)( d )

2

im? 1 im?(-y)

g Ay (gt

e+ -»27 y22 ay 21

=e

im

1
This means that the integral 19 equals same integral 20 for xe(O,E) plus e *

1
multiplied by complex conjugate of same integral for xe(O,E). So we just need to know

.[ e 4 x22 (1 ) dx (since we can easily get its complex conjugate).

o 1 ..
Now make a further substitution x = ——. This gives us

w+l1
-1
:(1,V+—1)2dw’ WG(l,OO)
w+l1 w+1

So the integral becomes

-2y

i LA
J.le4(w+l) 1 2 2 w 22 —dw
© w+l w+l1 (w+1)?

[ )
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iﬂzxz

e expl ™ tog(w-+ 1)]exp[ L log(— )]
_ J'OO 2 2 w+l aw
1 -7
w Z(w+1)?
ima® it
eXp[4 + log(w)]
I 1-2 .
w 2 (W+ l)q

g 1+4

. . g+1—
Now the denominator behaves like w 2 =w ? as w— .

Since the numerator is simply a combination of cosines and sines with modulus equal to
1, the integral converges for all ¢ >0. Now how can we evaluate it? This is where we can use

the power of the saddle point method. The phase of the numerator

2

o t
Aot ) Elog(w)}

ﬂ@ﬂ{

has two large parameters. If we can find the saddle point, we should be able to arrange for
the integration path to pass through the saddle point in such a way and the integral can be
estimated using an asymptotic series with terms

n

2
0, - n=123,...
Max(e,t)

This will converge very rapidly, since & and ¢ are large. Let us consider f(w).

—na’? t
w=—"%_+ L —9
SO s 2w

tw+1)  7ma’w
:> =

2 4 23)

o w

=S +2w+l=

2

”0; yw+1=0,

=>w+Q2-

[ =)
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_(2_7ra2)+\/4+7r2a4_272a2_4
e 2t T 4t t
2
:ﬁa2_1+7ra 8
4 A ma’
2 2 2
_2e g2 A
a a a
2 2
=2 1L |
a a
where:  a= |t =g =
r r

Here, the positive square root is only interested. So if &® > a’, a real saddle point will be at

2 2
Wy =22 12 | 1eL,m).
a (04

If & <a’, then no real saddle point exists since the square root is complex. So a crucial

. : . |8t .
change in behaviour occurs if @ <a=,/— and a>a. Denote w, ,6 by the variable pc or
V4

pc(a) and pc(a > a) €[1,0). Differentiating again gives
m’
2(w+1)° 2w’

o :l 7o’ _
S"(w=po) 2[@0“)3 pcz}

J'wy=

_ o’ _1
2pc’ | t(pc+1)°
ma® _ 2(pe+1)°

from the equation 23 =
t pc

[ =)
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t [chz(chrl)2 _1}

s f"(w= pe)=
A pe) 2pc2 pc(pc+1)3

__Hpel)
2pc’(pe+1)
so near the saddle point at w= pc

t(pc—1)

Sm) = f(pc)+ 10 (w—pc)’ +O((w— pc)).
pc (pe+1)

So let us consider the integral as contour integral of the form

2
V104

. t
j eXp[l(4(Z+1)+210g(Z))]dZ

@) -
z 2(z+1)!

Suppose we choose as our contour the following in the figure 3.1.

Unit Circle

Figure 3.1: Contour of integration in 25.

From the point z=1, move along the unit circle to z=—i. Then draw a line from z=—i

/s .y - . D
at an angle 7 (z=—i+se *,s5>0) until it crosses the line originating from z = pc at an angle

[ =)
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/4

T iy . e s .
1 (z= pc+ue * ue(-r,r)) as shown. Carry on along this ray until it hits the circle centred at

z=0 of radius R (z=Re" #>0). Move along this circle until you reach z=R. In the limit
R — oo this is equivalent to integrating along the real axis from z=1 to z =oo. Since integrand
22 has no poles for w>1.

fl - fCl(O) - f(—i+se_i%) - f(pc+uei%) - fCR(O) =0 (24)
by Cauchy’s Theorem. Hence the integral 22 is given by
fl = fcl(o) + f(—i+se_i%) + f(pc+uei%) + fCR(O) (25)

It would expect that it is the integral through the saddle point that dominates the result.

Now consider what the integration [ . will equal, where
(pc+ue4)
x = _exp[if (W)]
s = T —==2—t= 26
J.(p6+116 4 ) J.(p6+1,16 4 ) (1_2) w ( )

w 2 (w+1)?

a

. T
i— iz
Suppose w= pc+ue *;ue[-r,rl=dw=e *du

t(pc—1) (w—

i.enear pc= f(w)= f(pc)+ 2pc (et 1) pc)

= fw) = f(pe)+HPETD_ o

4pc*(pc+1)
So the integral 26 becomes:
N 2 _ 7
&Pt exp [w
zJ‘r 4pc(pc+1) du
., T o4 G

i -4y i‘
[pc+ue*] 2 [pc+1+ue?]’

ina’® it ¥4
xp[————+ —log(pc)+—
[4(pc+1) 2 g(pe) 4]

)
pc 2 (pc+1)!
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where: X(pc)= t(zpc——l)
4pc(pc+1)

Now provided r2X(pc) > 1, so that exp[—°X(pc)] = 0.

We can estimate the integral from tables to give:

2

2pc exp[z(ﬁ 5 log(pc)+

)] [ z(pc+1) }_O( 1 ]3
C—g(pc +1y? \ t(pc—1) X(po)

2
1 j — 0 as ¢ gets large and large. Hence the integral 26 becomes:
X(pe)

~ Jre | \/m o’
~2{pcﬂ t(pc—1) eXp[l(ﬁ Elog(pC)Jr )] (27)

Now if the other integrals in the right hand side from the equation 25 are small, i.e:

where the value O (

J-CI(O)’ J.CR(O) and‘.[(—me_i‘*) « J.(pc+ueiz)
inuz
. ( .- .
Then our integral 19 equals the result 27 plus ¢ * multiplied by complex conjugate of the
result 27 also. Thus,
17— X (1727) (g+1t

\/E ! z(pc+1) o’
2{])0“ (pe—T) exp[z(ﬁ 51 g(pc)+—)]

.2

+e * exp[— ((— —Og(pc)+ )]]

+1) 2

=4em;2|: \/E T{ z(pe+1) }cos{z+£1Og(pc)——7m2(pc_l)}
pc+1 \/ t(pc—1) 4 2 8(pc+1)
[ &)
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Hence, research arrives at the final estimate for confluent hypergeometric function 18
.2
I S £ ) [Jpc H /7z<pc+1)}
2 20 2 2

Tt _ﬂaz(pc—l)
xcos{4+2log(pc) —8(pc+1) } (28)

2a°
2

2
{1+1/1—a—2 }le(l,oo), az\/ganda>a,
a o T

2 2
1= pc+1= d

where pc =

which is valid as # — oo, Also, if @ >0 = pc=

2 2
a a

4o’
H(pe—1) a2

4pct(pe+l) . 4a® , 4a’
4F% e
( e ) ( . )

= X(pc) =

2
a
ta*(4-2—
N ta*(4a’ —2a”) N ( o’
2 2 25\2 2
l6a"(4a” —a”) 160{4(4_%)2
a

2 3 3
where o — 0 = a_z — 0= X(pc) = ——, so this should be valid provided a <1*.
a o

In fact, although we shall not show it here the approximation above is valid for all & > 1
3

even a > 1. So we can also take the limit o — oo,
Now we will consider the integrals which we have ignored in 25. The integrals IC o -0
R

as R—oo and —i%) exponentially quite small. Therefore, we shall show that the integral

(—i+se

L 0 does not contribute to the hypergeometric function. We have the integral
1

ina’?

it
j eXp[4(w+1) + log(w)] N 0o
G0

a-1
w 2 (w+1)!

[« )
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where C,(0) is the unit circle. Let us to suppose w= C,(0)=e";¢ [0,— %]. So
1 1
w+1  (cos(@)+1)+isin(¢p)

_(os(@) +1)~isin(9)
(cos(@) +1)* +isin’ (#)

_ cos(p)+l  isin(g)
2(cos(@)+1) 2(cos(g)+1)

_ 1 isin(¢)
2 2(cos(g)+1)

So the integral 29 becomes
2 .
B
l‘e 8 J- 2 (COS(¢)+ ) d¢

0 a9 .
(€’) 2[1+e’]"

Note that when ¢ is small and negative, the exponent of the exponential term behaves
o’
8

1
like —5([ —t]|@|) since a>a the exponential term declines very rapidly as ¢ changes

/s .
from 0 to — E Now make one further substitution

__sin(¢) €[0,~1], where ¢ €[0,— g]

- cos(¢)+1
@ _ cos(@)[1+cos(g)] + sin(¢) x sin(gh)
df (1+cos(¢))’
S SR I
_1+cos(¢) 2(1+x )
2
= ¢ = (1+x%) dx
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sin(g) = x(1+ cos(@)) = 2x2 = 1+cos(f) = 22
1+x 1+x
cel = 12(1—x2+2ix)
1+x

(1=-x7
porf22)

j 1 .
1+€¢ :W(2+2ZX)

= eitan_l(X)
1+ x?
ei¢ (eiaﬁ)%
SO d¢ = ——d¢
(1+€7)?

a-d .
(€’) 2 (1+e?)"

1 _ —X
q 1 2
€Xp| - cos 3
2 1+x 2
X d

X
2 Y ] . 1+ x?
o exp[iq tan™ (x)]

. ﬂ [ 1=x?
(1-a) Py eos
dx

BTN 1
(1+x7) exp[ig tan™ (x)]

2 (1-q)
T ey

1 _ 2
because cosl(l x2 j =2tan "' (x); x € (=1,1). So the integral 29 transforms to:
+x

emgxe [_tarccos 1-x* ]
L2 7
m? €0 OPL 1422

. 8 -
e J. X.
0 2(q*1)(1+x2)(1*q)
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izzzoz2

Clearly, this integration will equal a real number times ie 3 i.e:

2
eTxexp[—_tarccos L= ]
.2 o2
H 2 1+ x> =

dx=ie ® xReal Number (30)

8
e J.
0 2(q—1)(1+x2)(1—q)

Now in the confluent hypergeometric function, we have found the integral 19 equals same

iﬂu2

. 1 - . .
integral for xe(O,E) plus e( i multiplied by complex conjugate of same integral for

1 o o
xe (5,1). However, the contribution around the unit circle j

o is given by 29 for the integral
1

X€E (0,5). So the contribution to the integral 19 from integrals around the unit circle is:

i/zzz2 —im2 im2

ie 8 x Real Number —ie ® e * xSame Real Number

imz

=ie 8 [Real Number —Same Real Number]= 0.

So the integral L 0 in 30 does not contribute the confluent hypergeometric function.
1

Therefore, our confluent hypergeometric function can be estimated very accurately from the
saddle point integral through pc along as we will see in example 3.1.1.

3.1.1 Example 1

Compute the hypergeometric function 17 from =500 to #=1000 where o =100 and
q=1.5. Maple will be used to find the first solution by the result 28 and for the second solution
by Maple’s intrinsic function. In the first case, it has used both of the result 28 and Maple’s
intrinsic function to get the time difference between the time for the first solution and the time
for the second solution (7). In the second case, the same methods have used but to get the
percentage of error (& ). Two graphs are sketched by using these values with the values of ¢. So,
if we run the code C in Maple, we will get the result as the two graphs below (figures 3.2 and

3.3). The figure 3.2 illustrates dramatically incremental relationship between ¢ and the time T .
When ¢ gets large and large, the time difference between the two solutions will increase
gradually, which will be more clearly in the next example 3.1.2. While the figure 3.3 shows the
inverse relationship between ¢ and the relative error ¢. which means if ¢+ becomes larger and
larger, relative error will fall dramatically. This gives us a very similar result for the
computerized result by Maple’s intrinsic function but in a very short time.

[ )
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Figure 3.2: Values of [¢] With Times [T].
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Figure 3.3: Values of [#] with relative error €.
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3.1.2 Example 2
Compute the hypergeometric function 17 if £ =10000,« =1000 and g =1.5. by:

(a) The result 28. (b) Using Maple’s intrinsic function.

In the first case(a), if we run the code D in Maple, we will get the value of the confluent

hypergeometric function =[1.272100242x10°'°+1.288330276x10°*'*I] and [T =0.234,]
which means it has taken fractions of a second to calculate the confluent hypergeometric
function. However, Maple had spent for more than 4 hours to get the result using the case (b)
and it did not stop.

4 Conclusion

This research has given a brief overview of the hypergeometric function and its
importance in the present time. It focused to compute one of commonly used hypergeometric
functions in applied mathematics. So, it has found a quick and easy method to compute this
function compared with the Maple where this method can help to save time for anyone who is

interested in these functions. Thus, future research should be to find the most effective methods
to simplify the computation of the hypergeometric function, as it is an important factor in the
expansion of applied mathematics, which it will open several other domains in applied science.
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The code of Maple
There are four codes have written for this research. These codes can be received by sending an
email to heshamalzowam@yahoo.com .

The list of codes:

1. Code A computes the series 2 by using the series method.

2. Code B computes the hypergeometric function by using Taylor series 4.
3. Code C computes the hypergeometric function by using the result 28.

4. Code D is a very similar to the code C but it uses when ¢ as a single value.
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