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: ملخص   
رص في هذا البحث، قمنا بتقديم فئة فرعية معممة جديدة من دوال بازيليفيتش، وهي فئة معينة من الدوال التحليلية  والاحادية المحددة في ق        

 لهذه الفئة  الفرعية. وتحصلنا على العديد من النتائج لمؤلفين سابقيين.  و المعاملات المحدودة  متباينة المعاملاتالوحدة المفتوحة. ثم نقوم بدراسة 

 

Abstract 

  In this paper, the researcher introduced a new generalized subclass of Bazilevic 

functions, which are a particular class of analytic and one to one functions defined in the open 

unit disc. Then a study coefficient inequality and coefficient bounds for this subclass was 

performed. As a result, several dervations for previous authers was obtained. 

Keywords: Analyticfunctions,Bazilevic funcions, coefficient inequality, coefficient bounds, 

Generalization derivative operator. 

Introduction 

The Bazilevic function is a type of univalent function, which is an analytic and one-to-

onefunction in the unit disc.  It plays an essential role in the field of complex analysis. A subclass 

of Bazilevic functions would refer to a particular set of these functions that share certain additional 

properties or characteristics. These subclasses can be defined based on various criteria, such as the 

behavior of the function in certain regions, the values of their coefficients, or their relationship to 

other classes of functions. For the importance of the class Bazilevic Functions , many authors 

studied these types of the subclass of Bazilevic functions. For instance, (Kim,2009) investigated 

the growth theorem of Bazilevic functions of type (α, β), also  (Oladipo & Olatunji, 2010) studied 

some of the properties of certain subclass of Bazilevic function defined by Catas operater.as well 

as, (Arif. et al, 2011) introduced the new class of strongly Bazilevic functions by using a 

generalized Robertson function and give some interesting properties of this class. In addition, 

(Amer&Dures,2012) studied distortion theorem for class of Bazilevic Functions. Furthermore, 

(Amer. et al, 2018) defined a subclass of uniformly Bazilevic Functions using new generalized 

derivative operator. Recently (Breaz.et al., 2022) introduced a new class of Bazilevic functions 

involving the Srivastava-Tomovski generalization of the Mittag-Leffler function and they obtained 

coefficient estimates,subordination conditions for starlikeness and Fekete–Szegö functional. 

Despite, the amount of previous researches that focused on this type of functions. On the other 

hand, there are still a lot of interest about propriety of Bazilevic functions, that lead us as authors 
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for this paper to study coefficient inequality and cofficient bound for the new subclass of Bazilevic 

functions which is defined by a generalized derivative operator 𝐷𝛼,𝛿(𝑚, 𝑞, 𝜆). 

 

 Let = { :| |<1},z zU C be the unit disc in the complex plane, and let A  be the class of 

functions which are anaylyticand normalized by the condition𝑓(0) =  0, 𝑓′(0) = 1in U .It has 

a Taylor series representation 

 

         𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑘𝑧𝑘∞
𝑘=2 ,   (𝑧 ∈ 𝑈),    (1).  

  

The class 𝑃 consists of all functions of the form 

𝑝(𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧2 + ⋯ + 𝑐𝑘𝑧𝑘 = 1 + ∑ 𝑐𝑘𝑧𝑘,     (𝑧 ∈ 𝑈),

∞

𝑘=1

 

that are analytic in U such that 𝑝(0) = 1 and ℜ{𝑝(𝑧)} > 0, 𝑧 ∈ 𝑈.A function 𝑓 in 𝑃 is called a 

function with positive real part in U. 

 

1. Preliminaries  
         The authors in [1,2] introduced a generalization derivative operator 𝐷𝛼,𝛿(𝑚, 𝑞, 𝜆), as the 

following: 
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Using the operator above we give the definition of a more larger and generalized subclass of 

Bazilevic functions as follows: 

 

Definition 1.2 Let , ( , , , , )T m q      denote the subclass of A  consisting of functions 𝑓 

which satisfy the inequality 
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 where , 0, > 0 ( )q is real    and 0, , ,0 <1.m    N Z  

 

Base on Definition 1.2 above, we have the following remark to make. 

Remark 

1)  For = = 0, = 0q   and 0m N , we have  

 
0,0 ( )( ,0, ) ( )
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(1 ( 1)) (1 ( 1)
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m m
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where mD  is the Al-Oboudi derivative operator.While this class is studied in [3].  
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2) For = = 0, = 0, =1q    and 0m N , we have  

 
0,0 ( ,0,1) ( ) ( )

> > ,
m

m m

D m f z D f z

z z

 

 
 
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where mD is the S â l â gean derivative operator. While this class is studied in [3]. 

3) For =1, = = 0, = 0, = 0m     we have  

 
0,0 (0, , ) ( ) ( )

> 0 > 0,
D q f z f z

z z

   
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which is the class of functions studied in [4]. 

 

For the purpose of simplicity and clarity we wish to state the following function,  

from (1) we can write that. 
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 Using binomial expansion we have  

 ( )( ) 1

=2

= ( ) ,k

k

k

f z z a z
  


+ −+  )3 (  

 where the coefficients ka  shall depend so much on the parameter .  

Applyingeq (3) in derivative operator (2), we obtain  
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In order to derive our main results, we have to recall here the following lemma:  

 

Lemma 1.3[8] A function𝑝 ∈ 𝑃 satisfiesℜ{𝑝(𝑧)} > 0, ( )z U  if and only if 

𝑝(𝑧) ≠
(𝛹−1)

(𝛹+1)
   (𝑧 ∈ 𝑈,|𝛹| = 1)  

  

 

2 Coefficient inequality for functions in the subclass , ( , , , , )T m q      
 

 We intend to derive the following theroem for the purpose of our next result. 

Theorem2.1A function 𝑓 ∈ 𝐴 is in the class , ( , , , , )T m q      if and only if  
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 Proof: Upon setting 
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 for ,( ) ( , , , , )f z T m q     ,we obtain that ( ) ,p z P  and ℜ{𝑝(𝑧)} > 0, 𝑧 ∈ 𝑈. 

 Using Lemma 1.3, we have that 
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Then , 
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Thus we find that 
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that is 
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 which completes the proof . 

 



  
 

Coefficient Inequality and Coefficient Bounds for a New Subclass of Bazilevic Functions 500 

 Setting = , = , = = 0q l m n    in Theorem2.1, we get result in[6].  

Corollary2.2  A function ( )f z A  is in the class T0,0(n, l, λ, β, γ) ≅ Tn
β

(l, λ, γ) if and only if  
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Setting, = 0, = = = = 0, =1q m      in Theorem 2.1, we get result in[5].  

 

Corollary 2.3  A function ( )f z A  is in the class 𝑇0,0(0,0, 𝜆, 0,1) ≅ 𝑇(𝛼) 

 if and only if  
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Theorem 2.4 If ( )f z A  satisfies the following condition:  
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It is easily seen that (5) is equivalent to 
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Considering the Cauchy product of the first two factors, (6) can be rewritten as follows:  
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 Then ,( ) ( , , , , ).f z T m q      This completes the proof of Theorem 2.4.  

 

 Setting = , = , = = 0q l m n   theorem 2.4, we get result in [6].  
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 Setting = 0, = = = = 0, =1q m     Theorem 2.4,we get result in [5].  

Corollary 2.2  If ( )f z A  satisfies the following condition:  

 
=2 =1 =1

( 1)
k t

t j

j

k t j

t j a k t

 


−

     
     

− − −     
          

    

 

 (1 ), −  

then ( ) ( ).f z T   

 

3 Coefficient bounds for functions in the subclass , ( , , , , )T m q      

  In this section, we consider the coefficient bound for functions , ( , , , , ),f T m q      

and all the parameters remain as initially defined. 

 

Theorem 3.1  If , ( , , , , ),T m q     then  
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and  
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 Proof:  Note that, for , ( , , , , )f T m q      
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 Then ( )p z  is analytic in U  with (0) =1p  and ( ) > 0p z , .z U  For the clarity we let   
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 where for convenience in the above we let  
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  hence from (7) and (8) we have  
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  On comparing coefficients in (9) and using the fact that the | | 2, 1kc k  , 

  the results follow and the proof is complete. 

 setting =1, , = 0   and = 0q  in the Theorem3.1, we get the result in [6].  

Corollary 3.2  If 0,0( ,0,1, ) = ( ),nT m T    then  
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4. Conclusion  
       Finaly, in this study the researchers showed and proved some propiereties for a new 

subclass of Bazilevic functions defined by a generalized derivative operator 𝐷𝛼,𝛿(𝑚, 𝑞, 𝜆)..  
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