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Abstract:

The present paper discussed a study on the approximate solutions for the Cauchy-Euler
differential equation with fractional derivatives in order 0 <« <1. The researchers applied the
Runge-Kutta methods to the Fractional Cauchy-Euler differential equation after transforming
them into a system of fractional differential equations. The rsearchers further presented

examples to illustrate the effectiveness of these methods and compared the results with exact
solutions.
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1 Introduction

In this article, the researchers study the following Fractional Cauchy-Euler differential equations
subject to the conditions:
t*DAu*Diu+u)+u=f (t,u(t)) t fab] 1.1

u@=u,, Du@)=ul”, up)=u,

where 0<a <1,f (x)eC ([a,b]xR;R) and D/ are Riemann-Liouville derivatives.

The boundary value problems of ordinary differential equations play an important role in theory
and applications and consequence have attracted a great deal of interest over the years. Many
authors have studied the fixed-point theorems for the fractional differential equations with the
initial conditions, where studied the existence and uniqueness solutions for them. In Bradley et
al. [1] introduced the study of a class of linear difference differential equations with multiple
advanced arguments where equations are analogous to Cauchy-Euler ordinary differential
equations. Cauchy-Euler differential equations often appear in the analysis of computer
algorithms, therefore, Delkhosh [3] solved the special type of N-order Cauchy-Euler differential
equations by applying a variable change in the equations and after that obtained the conditions,
consequently, he obtained an analytical solution for the equations. Ibrahim et al. [8] proposed a
new formula for the fractional complex-step method utilizing the Jumarie definition and
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illustrated an approximate analytic solution for the fractional Cauchy-Euler equations, and
applied to image denoising. Pontes [13] presented a study on the solutions of a homogeneous
Cauchy-Euler differential equation from the roots of the characteristic equation associated with
this differential equation where his solutions were dependent on a polynomial equation of degreen .

In this paper, the researchers have used Runge-Kutta fourth order, Runge-Kutta-Mersion and
fifth-order Runge-Kutta methods to solve Cauchy-Euler Fractional differential equation. The
rest of the paper is organized as follows: In section 2: fundamental elementary for fractional
integral and derivatives differential equations. In section 3: deals with a brief discussion of the
Runge-Kutta techniques. In section 4: consists of our selected problem being introduced and the
application of Runge- Kutta methods to the selected problem. In section 5: consists of a
discussion of illustrative examples and conclusion. Finally, the paper ends with a list of
references.

2 Preliminaries
In this section, we introduce some definitions, Fundamental Concepts and properties of the
Fractional integral and derivative equations, (see [9,12]).
Definition 1.1. The left and the right Riemann-Liouville fractional integrals 1% and 1 of order
o > 0are defined by
1 ¢x
1%f (x)=——| (x =s)**f (s)ds, x (a,b],
“f (x) F(a)ja( ) (s) (ab]
and
| «f (x)'—;_[b(s—x)“‘lf (s)ds, x <[a,b)
b~ ) F(n _a) N ’ y )
where n—1<a<n,ne\N.
Definition 2.2. The left and the right The Caputo fractional Derivatives CD; and © D of order

o > 0are defined by

CD:if (x)=(1“=D"f (x)= (x —s)" M M(s)ds, x >a,

I'h—«a) L
and
°DIF (X)i= (<717 DF (x) =~ [ (s —x)" e @ (s)ds, x <b,
b b r'(n—a)
where n—l<a<nneN
Definition 2.3. The left and the right Riemann-Liouville fractional Derivatives D and D” of
order > 0 are defined by

1 d" px
Df (x):=D"ol"*f (x)=—— X —s)" 7 (s)ds, X >a,
“f (x) ! ()F(n_a)dxnja( )" (s)
and
nEn n- (_1)n d " (b n-a-1
Df (X)=(-)"D" ol (x)=——————+| (s—x)"“"f (s)ds, x <b,
S ()= (=D"D" o117 F (x) r(n_a)dxnjx( )" (s)
where n—-1<a<n,neN
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The basic properties of D are as follows:
Property 2.1. ForR(n) >-1,0<a <1, x >0andf (x) eC[a,b], we have

a_ DOi(Xn): F(1+n) ana

a Ird+n—-a)
b_ CDoi(Xn): F(1+n) Xn—a

a F(1+n a)
C- I;z J' (X S)a -1 }/d — B(O{,l-F]/) Xy+a — F(1+7/) X}/ﬂx’ X >O.

F(a) I'l+y+a) I'l+y+a)
where we have used B (a,1+7) = w.
L(a+y)

d- 1217F (x)=127F (x)=1717F (x),andDD/f (x) =D "f (x)=D/Df (x).
Property 2.2 If f (x) e AC[a,b]and0< a <1, then:
I;CD;f x)=f (x)-f (a),

12D (x) =F (x)-f (b).

Property 2.3 For 0 <a <1we have:

“f (x) = (X( a)_)f(a)+CD “f (x)
Lemma2.1. LetO<a <land f (x)eCJ[a,b], thenDS1 f (x)=f (x),x >0.
Lemma?2.Let n =[a]+1fora N ,; a=nforaeN,,if f (x)e AC"[a,b]orf (x)eC"[a,b]

n-1

(then 1 “D“f (x) =f (x)— ka(a)(x —a)*.

3 Numerical Methods

The classical 4th-order Runge-Kutta techniques were developed by Runge and Kutta, they
introduced the classical formula of the Runge-Kutta method in order four, where this method
took a major role in the study of iterative methods on explicit and implicit to apply to solve the
ordinary and partial differential equations. In addition, use it to solve systems of ODEs with
initial conditions [17,18]. Goeken et al. [6] proposed classical of the Runge-Kutta method with
higher derivatives approximate for the 3" and 4" order method. In 1969 England [4] developed
another fourth order Runge-Kutta method. The authors constructed the modified Runge-Kutta
method and showed that it preserves of accuracy of the original one [10]. Rabiei et al. [14-16]
developed the fifth-order improvement Runge-Kutta method for solving ODEs. Hossain et al.
[7] presented study on numerical solutions for solving second order initial value problem for
ODEs by using Runge-Kutta and Butcher's fifth order Runge-Kutta methods.

Now, consider the initial value problem:
y'(x)=f(x,y(x)) yXo=Y, 3.1
Define h to be the time step size and x; =X, +1ih . So, we need some definitions:

Firstly, the formula for the fourth orders Runge-Kutta method for initial value problem (1.1) is
given by:
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klzhf (Xivyi)

h k
k,=hf (x, +—=,y, +2
2 (I 2 yl 2)

h k
ky=hf (x, +=,y;, += 3.2
3 ( i 2 y| 2) ( )
k,=hf (x, +h,y, +k;)
Via =Y F o2+ T =02

Secondly, the improvement version of classical Runge-Kutta method for IVP (1.1) which called
Runge-Kutta Mersion (RKM) method with the global errorO (h*) , it can be written as the form
(see[11]):

Yia=Yi +%(k1+4k4+k5); i=012,... (3.3)
where klgkg,k3;k4,k5 are given by
k,=hf (x;,y;)
h k

K, =hf (, +%,y, +2 24
2 ( i 3 y| 2) ( )
k3 = hf (Xi +—,Y; +(k1—+6_k2))
K, =ht (xi+ﬂ,yi+(k1;k3))

K, =hf (x, +h,y, +%(k1—3k3 +4k,))
with the local truncation error at each step can be using by the following formula :
E, =%(2k1—9k3 +8k, —k;)

Finally, the Butcher's fifth-order Improved Runge-Kutta method (RKS5) for IVP (3.1),in this
case, the order conditions of the are obtained up to order six and the coefficients of the fifth
order method are determined by minimizing the error norm of the sixth order method. The RK—
Butcher algorithm of equation (3.1) can be written as the form (see [2,5]):
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k,=hf (X;,y;)
k, =hf (xi+%,yi+%) (3.5
k, =hf (x, +%,yi +%
k,=hf (x, +%,yi —k—22+k3)
ks =hf (x| +%,yi +3k11+—69k4)

ke =hf (x; +h,y, +%(—3k1 +2k, +12k , —12k , +8k)
The fifth-order predictor is defined as:
Via=Y; +9—10(7k1+32k3+12k4+32k5+7k6); 1=012,.. (3.6)

The errors of the initial value problem (3.1) are calculated by errors = |y t)-v. | , where y (t;)
is the exact solution and Y, is an approximate solution.

4 Main Results
In this section, we applied the pervious numerical methods to find approximate solutions for
Cauchy-Euler Fractional differential equation (1.1), we shall transformed the equation (1.1) into

a system of fractional differential equations as the follow: let u =u,, so we get:
D,u, =u,
Dou, =x 2*(f (x,u(x))—x“Dfu —u) (4.2

=X 2F (x,u (X)) =X " u,—x *u,]
with initial conditions: u(a)=u,, D“u(a)=u'".

Now, we apply the previous techniques, firstly, we compute a numerical solution for system of
fractional differential equations (4.1) by using the fourth-order Runge-Kutta method, as follows:
we compute:

e = (600

h K
kiZ:hfi(xj+E,u1’j+%,u2’j+%) (4.2)
h k 2 k22
Kig=hf, (X +E’ u; +71, u,; +7
Kiy=hf (¢, +h,uy; +ky, U, +ky)  i=12
Consequently, we compensate K,,, K,,, K,3, K;,; 1 =12, in the following iterations:
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1 .
Uy =Uyg +E(k11+2k12+2k13+k14); 1=012,..

Uy g = é(k +2K 5, + 2K 5+ Ky ) (4.3)

Secondly, the Runge-Kutta Mersion method for the Cauchy— Euler fractional differential
equations (4.1), can be written in the formula:

u' J+1 6(k +4k +k )’ I :1’ 2’ J :O’]‘l 2! (44)
where' Kis Ky, k,3, K,4, Ki5; 1 =1 2are taken the formula:
=hf, (x;,u,;,u
h k k
ki, =hf, (x; t30 U +%, Uy, +%

o =P 05 +%’u“ Jl%ﬁlauz,; k21+k22) (4.5)
kl4:hfi(xj+%,ulyj+%’u2'j k +k23)

1 1 -
ki5 :hfi (Xj +h, ul,j +E(kll—3k13 +4kl4)1 u2,j +§(k21_3k23+4k24)); i =12

Finally, the fifth-order Improved Runge-Kutta method (RK5) for Cauchy—Euler fractional
differential equations (4.1); can be written as the form (see[2,5,6]):

ki =hf; (X, Uy ’u2,j)

h k k
k|2=hfi(xj+Z’u1,j+f1uz,j+f) (4.6)
Kig=hf, (X +%’ul,j +%,u2’j k21+k22)
h kg, k
k,4:hfi(xj+?u 2 +Kyg,Uy —%+k23)
3h 3k,, +9Kk 3k +9k
ki5:hfi(xj+7’u1,j+$lu21j 21 24)
kig=hf;(x; +h,u ; +®,,u,; +@,) ;
where:
:%(—3ki1+2ki2+12ki3—12ki4+8ki5); i —12
Consequently; the RK—Butcher of 5th order with six stages of equation (4.1) defined as:
Ui ja=U, +9—10(7ki1+32ki3+12ki4+32ki5+7ki6); i=12; j=012,... (4.7)
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To illustrate the efficiency of these different techniques of solving the Cauchy—Euler fractional
differential equations, we compared the numerical results for Runge-Kutta methods with the
exact solutions; in the following section.

5 Ilustrative Example

In this section, we apply the previous techniques to calculate approximate solutions and
absolute errors for the following examples and verify which one is the best and converge to the
exact solution quickly or not.
Example 1. Consider the Cauchy—Euler Fractional of nonlinear fractional derivative:

1 1 1 1 . 8
X 2D2U (X 2D U +U)+U = 3t? +cost —x sinx +——t2 +~/X cos(x +2)

3Jr
with initial conditions: u (1) =1.5403, D (1) =1.2916, u(2) =3.584 in the closed interval [1,2]
, to find approximate solution for Cauchy-Euler fractional differential equation, put u =u,, so
we get the following system:
D&, =u,

1 cosX . 8 cos(x +%) u u
Du, =3x + —sinx + X + ( “)——2——1

X 3 Wk x
with conditions: u, (1) =1.5403, u, (1) =1.2916.

Table 1. shows the approximating solutions for u of Cauchy-Euler Fractional differential
equation, which was obtained by using the Runge-Kutta Butcher methods and their comparison
with the exact solution, where the graphical results of the numerical solutions are shown in Fig.

1, for step lengthsh = 0.1, 0.01, 0.001.

; Exact Error Error w.r.t. Error w.r.t.

T ORK Tire RKMO oM RIG RKS5

1.0  1.5403 1.5403 0.00 1.5403 0.00 1.5403 0.00

1.1  1.6636 1.6755 0.0118994 1.56731 0.096285 1.67554 0.0119437
1.2 180236 1.82379 0.0214286 1.59853 0.20383 1.82396 0.0216036
13 19575 1.98678 0.0292807 1.63469 0.322812 1.98717 0.0296667
14 212997 2.16617 0.0362044 1.67658 0.453382 2.16684 0.0368764
15 232074 2.36374 0.0430054 1.72509 0.59565 2.36477 0.044035
16 25308 2.58135 0.0505507 1.78113 0.749669 2.58281 0.0520073
1.7 276116 2.82093 0.0597733 1.84574 0.915419 2.82288 0.061725
1.8 3.0128  3.08448 0.0716774 1.92 1.09279 3.08699 0.0741922
19 3.28671 3.37405 0.0873427 2.00512 1.28159 3.3772 0.0904891
2.0 358385 3.69178 0.107929 2.10236 1.48149 3.69563 0.111777
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Exact Sol

RK
REM
eseeeeeeeRKS

n n L L L L L I L L L
14 1.6 1.8 10 12 14 18 18 10 12 14 16 1B

1.2 . .
for step length h=0.1 for step length h =0.01 for step length h =0.001

1o

Fig 1. Comparing Approximate solutions of U between Cauchy-Euler Fractional differential
equation curve & Runge-Kutta techniques

Example 2. Consider the Cauchy—Euler Fractional of nonlinear fractional derivative:

2x*  2x? xi  x? 8

AN ey T T T —X

Q) I r® r@d) 3vr
subject to initial conditions: u (1) = 2.505, D%u (1) =3.806 in the closed interval [1,2], to find
approximate solution for Cauchy-Euler fractional differential equation, put u =u,, so we get:

2 2 2 2
X:*Du(x*D% +u)+u =

2
D:u, =u,

2 2 1 8 2 1 2 U,
Do, =| —<+—=— Xt =l X -5+
rg) rE sz re) 1@ 2x°  x°

with respect to conditions: u, (1) =1.505, u,(1) =3.806

Table 2 shows the approximating solutions for u of Cauchy-Euler Fractional differential
equation, which was obtained by using the Runge-Kutta butcher methods and their comparison
with the exact solution, where the graphical results of the numerical solutions are shown in Fig.

2, for step lengthsh =0.1, 0.01, 0.001.

ol

X; E)L(j?ct RK Er I;VK_r_t RKM Elg &vl\;t RK5 ErR vlert
1.0 1.505 1.505 0.00 1.505 0.00 1.505 0.00

1.1 294573 2.90716 0.0385692 2.62324 0.322492 2.907 0.0387334
1.2 3.41772 3.35481 0.0629103 2.75455 0.663171 3.35415 0.063569
13 3.92002 3.84882 0.0711969 2.89852 1.0215 3.84734 0.0726765
14 445222 439063 0.0615903 3.05535 1.39686 4.388 0.0642179
15 5.01395 49817 0.0322529 3.22532 1.78864 4.97759 0.0363587
16 5.60491 5.62355 0.0186457 3.40873 2.19617 5.61763 0.0127255
1.7 6.22478 6.3177 0.0929246 3.60597 2.61881  6.30963 0.0848459
18 6.87331 7.0657 0.19239 3.81741 3.0559 7.05511 0.181799
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g Exact Sol if s
RK

REM
iy eeeeeseeeRKS

148

for step length h =0.001

18

16

for step length h =0.01

14

for step length h=0.1

Fig 2. Comparing Approximate solutions of u between Cauchy-Euler Fractional differential
equation curve & Runge-Kutta techniques

Conclusion

Our main goal is to find the more accurate results in numerical solutions of Cauchy-Euler
fractional differential equations by comparing different techniques of Runge-Kutta methods and
finding round-off errors. A numerical method is said to be convergent if the numerical solution
approaches the exact solution as the step size h tends to zero. The accuracy of the solution
depends on how small we take the step size h . But it doesn't always, because when we decrease
the step length the approximate solutions don't converge rapidly to the exact solution.
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