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 الملخص   
استخدام طريقة مفكوك فورييه الحدّي في حل نظام معادلات نظرية المرونة الخطية المستوية للاوساط متجانسة الخواص  يتم               

 في الاتجاه، التي تشغل مناطق ثنائية الترابط تحت ضغوط معطاة على الحدود. 
 ويتم الحصول على الدوال التوافقية الاساسية التي تعطي حل المسألة  والازاحات وكذلك الخطأ الناتج من تحقيق الشروط الحدية . 

 الحالة المدروسة: مجال بيضاوي ذو ثقب كاسيني بيضاوي. 
 ونحسب أيضا دالة الاجهاد والازاحات داخل المنطقة التي يشغلها الوسط. 

نظرية المرونة المستوية، المناطق ثنائية الترابط، الأوساط سوية الخواص في الاتجاه، طريقة التكاملات الحدّية،   الكلمات المفتاحية: 
لنقطى. ا طريقة التحقيق الحدّى   

   Abstract         
        A boundary Fourier expansion method is used to solve the system of field equations of 

plane, linear elasticity in stresses for homogeneous, isotropic media occupying a doubly-

connected domain under given pressures on the boundaries. The case understudy is: An elliptic  

domain with cassini oval. In the case, the boundary values of the relevant harmonic functions 

are obtained and the error in satisfying the boundary conditions is given. The stress function and 

the displacement are calculated inside the domain. 

   Keywords: Plane elasticity; doubly-connected domain; isotropic medium; boundary integral 

method.  

 Introduction 

        The boundary-value problems of plane elasticity for isotropic media have a wide range of 

applications. They are usually considered as useful approximations to the more realistic three-

dimensional problems. When the domain of the solution has complicated geometry, analytical 

methods become inefficient. The numerical methods stand on the other extreme, but their main 

disadvantage is that they do not produce formulae for the solution and large computational 

capabilities are also usually necessary, in addition to the problems raised by the stability of the 

numerical scheme. In the past few decades, the semi-analytical methods, in combination with 

the boundary techniques, have gained more popularity as being efficient and require less 

computational effort than the numerical approaches. Moreover, they produce approximate 

formulae for the solution and the resulting error can be easily evaluated in many circumstances. 

Trefftz's method is no doubt the most familiar boundary technique. It requires expansion of the 

solution in a properly chosen base, then to determine the expansion coefficients using the 

boundary values of the unknown function (Abou-Dina et al., computational aspects, 2003). 

Different aspects of this theory related to the completeness property of the used expansion basis 

and others were considered in(Fairweather et al., 1998), (Tolstov et al., 2012), (Abou-Dina et 
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al., A variant of Trefftz's method, 2004), (Herrera et al., C-complete systems for Stokes 

problems, 1982). An overview of the method may be found in (Herrera, : a criterion for 

completeness, 1980). An extensive literature exists on the use of this method, among which we 

cite (Herrera, Trefftz-Herrera Method, 1997), (Kolodziej et al., Boundary collocation method, 

1989), (poullicas et al.). When the basis functions are taken as logarithms of the distance with 

origins lying outside the domain of solution, this is the Method of Fundamental Solutions treated 

by many authors (Trefftz et al., 1926), (Kolodziej, Review of application, 1987). An application 

for doubly-connected regions is carried out in (Kita et al., 1995). 

      A variant of Trefftz's method, to be used throughout the present work, was suggested by 

Abou-Dina and Ghaleb (Liu, 2008). It relies on the satisfaction of the boundary conditions, not 

poinwise, but in the sense of 
2L . This method is called the Boundary Fourier Expansion Method 

(BFEM). It was successfully used to find approximate solutions to several boundary-value 

problems for Laplace's equation in rectangular domains and others. 

    In this case, we calculate the boundary values of the two basic harmonic functions through 

which the solution of the problem is determined in the (BFEM). The error in satisfying the 

boundary conditions is given. The stress function and the two displacement components are then 

calculated inside the domain using (BFEM).  

 Problem formulation 

 We consider an infinite hollow cylinder of an isotropic elastic medium. Let D  be the 

normal cross-section of the cylinder. This is a two-dimensional, doubly connected region 

bounded by two contours 1C  and 2C  with parametric representations   

 1 1 1 1= ( ) & = ( ),x x y y   (1) 

   

 2 2 2 2= ( ) & = ( ),x x y y   (2) 

 where   is the angular parameter measured, as usual, counter-clockwise from the x-axis of a 

system of Cartesian coordinates ( , , )x y z  with center O  in the cavity and z -axis along the 

generators of the cylinder. 

The cylinder is acted upon by pressures 1( )p   and 2 ( )p   on the lateral surfaces. Thus 

the considered problem is a generalized Lamé problem. 

It is required to find the stresses and the displacement at all points of the cross-section 

D . 

The basic equations and boundary conditions of the two-dimensional theory of elasticity 

may be found in standard textbooks. Here, we give a brief presentation of these equations along 

the guidelines given by Abou-Dina and Ghaleb (Zielinski et al.), (Deeb et al., 2018). 
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Let 1  and 1n , 2  and 2n  denote respectively the unit vectors tangent and normal to 1C  

and 2C  at arbitrary points, the positive sense associated with 1C  and 2C  being taken in the 

counter-clockwise sense. One has   

 1 1 1 1
1 1

1 1 1 1

= & = ,
x y y x

i j i j
   

+ −n
& & & &

 (3) 

   

 2 2 2 2
2 2

2 2 2 2

= & = ,
x y y x

i j i j
   

+ −n
& & & &

 (4) 

 where the dot over a symbol denotes differentiation with respect to the parameter  ,           

and   

 
2 2 2 2

1 1 1 2 2 2= , = .x y x y + +& & & &  (5) 

 In case the contour parameter is the arc length, the corresponding value of   is unity. 

  Clearly, the contours 1C  and 2C  should belong, at least, to the class 1C  so as to uniquely 

define the above defined unit vectors at each point. 

Basic equations 

 In this section, the well-known basic equations governing the plane theory of linear elasticity 

are presented in accordance with (Zielinski et al.), the representation of harmonic functions is 

briefly discussed. 

 Field equations 

 In the absence of body forces, the stress tensor components in the plane may be 

expressed by means of one single auxiliary function, called the stress function or Airy's function, 

subsequently denoted U . In fact, the equations of equilibrium   

 = 0,
xyxx

x y

 
+

 
 

 = 0.
xy yy

x y

  
+

 
 (6) 

 are automatically satisfied if the identically non-vanishing stress components are defined 

through the function U  by the relations:   

 
2 2 2

2 2
= , = , = .xx yy xy

U U U

y x x y
  

  
−

   
 (7) 
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 It is well-known that the biharmonic function may be expressed in terms of two harmonic 

functions according to the representation   

 = ,cU x y  + +  (8) 

 where "c" denotes the harmonic conjugate. Thus, the stress components may be rewritten in 

terms of the harmonic functions as: 

  

 
2 2 2 2

2 2 2
= 2 ,

c

xx x y
y y y y

   


   
+ + +

   
 

 
2 2 2 2

= ,xy x y
x y x y x y

  


  
− − −

     
 

 
2 2 2

2 2 2
= 2

c

yy x y
x x x x

   


   
+ + +

   
 (9) 

 The generalized Hooke's law reads   

 = ( ) ,
(1 )(1 2 ) 1

xx

E u E u

x y x

 


  

  
+ +

+ −   + 
 

 = ( ),
2(1 )

xy

E u

y x







+

+  
 

 = ( ) ,
(1 )(1 2 ) 1

yy

E u E

x y y

  


  

  
+ +

+ −   + 
 (10) 

 where E  and   denote Young's modulus and Poisson's respectively. Using the above relations 

together with (4), one arrives at:   

 = 4(1 ) ,
1

E U
u

x
 




− + −

+ 
 

 = 4(1 ) ,
1

cE U

y
  




− + −

+ 
 (11) 

 which may be rewritten as:   

 2 = (3 4 ) ,
c

u x y
x x x

  
  

  
− − − −

  
 (12) 
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 2 = (3 4 ) ,
c

c x y
y y y

  
  

  
− − − −

  
 (13) 

 where =
2(1 )

E


+
 denotes the shear modulus.   

 2 2( , ) = ( )o o o ox y a x b y c xy d y x + + + −  

 
=1

( cos cosh cos sinh
N

n n

n

a nx ny b nx ny+ +  

 sin cosh sin sinh ) ,n nc nx ny d nx ny A+ + +  (14) 

   

 2 21
( , ) = ( ) 2

2

c

o o o ox y a y b x c y x d xy − + − −  

 
=1

( sin sinh sin cosh
N

n n

n

a nx ny b nx ny+ − −  

 cos sinh cos cosh ) ,n nc nx ny d nx ny B+ + +  (15) 

   

 2 2( , ) = ( )o o o ox y f x g y h xy k y x + + + −  

 
=1

( cos cosh cos sinh
N

n n

n

f nx ny g nx ny+ +  

 sin cosh sin sinh ) .n nh nx ny k nx ny C+ + +  (16) 

   

 = cU x y  + +  (17) 

   

 2 2 2 2 2 21
= ( ) ( ) ( )

2
o o oU a x y c x y d x y x+ + + − +  

 
=1

( cos cosh cos sinh
N

n n

n

x a nx ny b nx ny+ +  

 sin cosh sin sinh )n nc nx ny d nx ny+ +  

 
=1

( sin sinh sin cosh
N

n n

n

y a nx ny b nx ny+ − −  

 cos sinh cos cosh )n nc nx ny d nx ny+ +  

 2 2( )o o o of x g y h xy k y x+ + + + −  

 
=1

( cos cosh cos sinh
N

n n

n

f nx ny g nx ny+ +  

 sin cosh sin sinh ) .n nh nx ny k nx ny Ax By G+ + + + +  (18) 

   

 = ( ) ( ) ,nn xx x xy y x xy x yy y yn n n n n n    + + +  (19) 

   

 = ( ) ( ) .n xx x xy y y xy x yy y xn n n n n n    − + + +  (20) 
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 2= (2 3 2 2 )nn x o o o on a c y d x k + − +  

 2 2 2 2

=1

( )( ( cos cosh cos sinh
N

x y n n

n

n n x n a nx ny n b nx ny+ − +  

 2 2sin cosh sin sinh )n nn c nx ny n d nx ny+ +  

 2 2

=1

( sin sinh sin cosh
N

n n

n

y n a nx ny n b nx ny+ − −  

 2 2cos sinh cos cosh ))n nn c nx ny n d nx ny+ +  

 2 2

=1

( )( 2( sin cosh sin sinh
N

x y n n

n

n n na nx ny nb nx ny+ + − −  

 cos cosh cos sinh ))n nnc nx ny nd nx ny+ +  

 2 2 2 2

=1

( )( ( cos cosh cos sinh
N

x y n n

n

n n n f nx ny n g nx ny+ − +  

 2 2sin cosh sin sinh ))n nn h nx ny n k nx ny+ +  

 
2 (2 6 2 ) 2 (2 )y o o o o x y o o on a c y d x k n n d y h c x+ + − − + − −  

 2 2

=1

2 ( ( sin sinh sin cosh
N

x y n n

n

n n x n a nx ny n b nx ny+ − − −  

 2 2cos sinh cos cosh )n nn c nx ny n d nx ny+ +  

 2 2

=1

( cos cosh cos sinh
N

n n

n

y n a nx ny n b nx ny− − −  

 2 2sin cosh sin sinh )n nn c nx ny n d nx ny− −  

 2 2

=1

( sin sinh sin cosh
N

n n

n

n f nx ny n g nx ny− − −  

 2 2cos sinh cos cosh )).n nn h nx ny n k nx ny+ +  (21) 

   

 = ( 2 4 4 )n x y o o on n c y d x k − − −  

 2 2

=1

( 2 ( cos cosh cos sinh
N

x y n n

n

n n x n a nx ny n b nx ny+ − −  

 2 2sin cosh sin sinh )n nn c nx ny n d nx ny− −  

 2 2

=1

2 ( sin sinh sin cosh
N

n n

n

y n a nx ny n b nx ny+ +  

 2 2cos sinh cos cosh )n nn c nx ny n d nx ny− −  

 2 2

=1

2( cos cosh cos sinh
N

n n

n

n f nx ny n g nx ny+ − −  

 2 2sin cosh sin sinh ))n nn h nx ny n k nx ny− −  

 
2 2( )(2 )x y o o on n d y h c x+ − − −  
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 2 2 2 2

=1

( )( ( sin sinh sin cosh
N

x y n n

n

n n x n a nx ny n b nx ny+ + − − −  

 2 2cos sinh cos cosh )n nn c nx ny n d nx ny+ +  

 2 2

=1

( cos cosh cos sinh
N

n n

n

y n a nx ny n b nx ny− − −  

 2 2sin cosh sin sinh )n nn c nx ny n d nx ny− −  

 2 2

=1

( sin sinh sin cosh
N

n n

n

n f nx ny n g nx ny− − −  

 2 2cos sinh cos cosh )).n nn h nx ny n k nx ny+ +  (22) 

 

 The method of solution: 

   Short presentation of the method   

   Let D  be a simply-connected region in the plane, bounded by a contour C  of finite length L  

and let  0,t T  be a real parameter characterizing the points of the contour C , starting from 

a point 0P  on C . In particular, t  may be the arc length s  measured on C  anticlockwise as 

usual, starting from 0P . Extension to doubly-connected domains, the case of present interest, is 

straightforward. 

  Consider the following boundary-value problem for the partial differential equation in the 

unknown function U :  

 ( ( )) = 0 in ,K U Dr  (23) 

 ( ) = ( ) on ,W U t f t C  (24) 

 where r  is the position vector of a general point P D , K  and W  are linear partial 

differential operators and f  is a given function on C . Special cases of this problem may be the 

Dirichlet's, the Neumann's and the mixed boundary-value problems. The case of multiple 

differential equations and boundary conditions is a straightforward generalization. 

  Consider now a complete set of linearly independent functions, called the " trial functions" , 

{ ( ), = 0,1,2,..., }i i N r . This set of " trial functions" is required to generate the approximate 

solution ( )aU r  as a linear combination of the functions ( )i r  with a certain error tolerance. 

One such set used for Laplace's equation is the well-known set of Cartesian harmonics  

 
{1,cos( )cosh( ),cos( )sinh( ),sin( )cosh( ),sin( )sinh( ), =1,2,...}nx ny nx ny nx ny nx ny n  

 in which we are presently interested. 

    An additional factor determining the choice of the trial functions would be the possibility of 

satisfaction of some boundary condition on certain parts of the boundary from the outset. Thus, 

the linear combination  

 
=0

( ) = ( )
N

a i i

i

U a r r  (25) 
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 rigorously satisfies equation (4.23)  and, possibly, the boundary condition (4.24)  on certain 

parts of the boundary. The number N  is usually referred to as the " number of degrees of 

freedom ". The unknown coefficients { , = 0,1,2..., }ia i N  will now be determined so as to 

enforce the boundary condition on the remaining part of the boundary. 

   The method proposed hereafter (BFEM) may be considered as a variant of the standard 

method of approximation of the solution " in the mean" . It generally leads to rectangular systems 

of linear equations and to integrals that are simpler to evaluate than in the standard method and 

relies on the following idea: Substitution of (1.3)  into (1.2)  yields the " error in satisfying the 

boundary condition" on C :  

 
=0

( ) ( ) ( ), [0, ].
N

n n

n

ER t a W t f t t T −   (26) 

 

   Extending the function ( )ER t  evenly to the interval [ ,0]T− , one obtains a function that, 

hopefully, should vanish on [ , ]T T− . The Fourier coefficients of this function with respect to 

the orthonormal set of functions {1,cos , =1,2,...}
m t

m
T


 should then vanish. Setting to zero 

the first M   Fourier coefficients generates a rectangular system of linear algebraic equations of 

size M N   for the expansion coefficients { , = 0,1,2..., }ia i N  in the form  

 
1

=0

= , = 0,1,2,..., 1,
N

mn n m

n

A a B m M
−

−  (27) 

 with  

                      

                                 
0 0

= ( )cos , = ( )cos .

T T

mn n m

m t m t
A W t dt B f t dt

T T

 
   (28) 

 It may also happen that we do not extend the function ( )ER t  evenly as explained above, in 

which case we have to consider all the other Fourier coefficients involving sines  as well. 

   The resulting systems of linear algebraic equations will be solved using the well-known 

method of " Least Squares". The number M  may be increased until some error criterion is 

satisfied. For our purposes, one of two measures of error will be considered hereafter:   

 1.  the maximal boundary error ( )ERB  measuring the largest error in satisfying the  boundary 

conditions:  

 
0, ]

= sup ( ) ,
t T

ERB ER t


 (29) 

   2.  the maximal solution error ( )ERS  measuring the largest error between the approximate 

solution ( )aU r  and the exact solution (assumed known) ( )eU r  at a certain properly chosen set 

of points in the domain of the solution:  

 = ( ) ( ) .max a k e k
k

ERS U U−r r  (30) 
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When the problem under consideration is a Dirichlet's problem, then ERB  will be used, since 

the maximum error in the solution is expected to be reached at the boundary. 

   For more complicated cases, where there is more than one boundary condition, the same 

technique may be used invariably. For this, one has only to link additional intervals to [ , ]T T−  

corresponding to the additional boundary conditions. This will indeed be the case of the 

considered problems, when the domain of the solution is doubly-connected and, consequently, 

there are two boundary conditions to be addressed. Here, 

Numerical results 

     Let the parametric representation of the circular and elliptical normal cross-sections    be:  

 1 1 1 1( ) = cos , ( ) = sin .x a y a     

and the Cassini ovals have Cartesian equation 

 

                                    ( ) 4222222 4 bxaayx =−++ ,                     ab .    

  the parametric representation for the normal cross-sections be:  

     2sin2coscos 2

4

2

2
22 −








+=

a

b
ax ,    2sin2cossin 2

4

2

2
22 −








+=

a

b
ay  

We take that pressures 1p , 2p  are specified on the two boundaries 1C , 2C  in the period 

0 < 2  .  

 1= , = 0.nn np    

on 1C ,  

 2= , = 0.nn np    

on 2C . 

   The above equations are solved numerically using Mathematica software, from which we have 

acquired the boundary values of the basic harmonic functions  , c  , , the stress function U  

and displacements u , v . This is shown on the following figures:  

 

                                     

 

Figure 1: Elliptical normal cross sections with cassini oval hole                                                                             

3.0,72.0,7.0,1,4.1 212211 ====== ppbaba         
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(a)                                                                              (b) 

 

  

                                                                           c     

   

 

                                                              

                                                                   (c)                   

       

 

\\\\  

               Figure 2: Harmonic function (a) ; (b) 
c ; (c)   on the elliptical cross-section 

with cassini oval hole.  

The error in satisfying the boundary conditions is taken by 

( ) ( )




dppERB nnnn 







+++=

2

0

2

2

1

1

 

The above equations are solved numerically, their solution provides the boundary values of the 

basic harmonic functions ,  ,c ,  the displacements  ,u   .v  In BFEM, we 

used 6 terms in the summations for the different unknown functions, i.e N = 4 in (27) and (28). 
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The corresponding number of zeroed Fourier coefficients was M = 8 for each of the four 

boundary conditions. The maximum error resulting from the use of this method is 
.0038010.0=ERB  

       Further increase of the value of M up to 30 kept the results almost unchanged and no 

instability was observed. We did not go beyond this value of M, but it is thought that there is an 

upper limit for M. 

     We have also calculated the stress function and the displacements inside the domain from 

the formulae given above, using the boundary results of BFEM. This is shown on figure (3)  

 

 

Figure 3: Stress function U  in the elliptical domain with cassini oval hole. 

     It is noticed that the stress function U assumes negative values inside the whole domain. Its 

surface has the shape of an inverted cup. In absolute values, it becomes larger as one moves 

away from the internal boundary towards the external one. As for the Cartesian displacement 

components, they are similar in shape as expected from symmetry.                                                                                                                             

                                   u                                                                                           v                                                                                  

                           

                                  (a)                                                                                     (b) 

           Figure 4: Displacements (a) u ; (b) v  in the elliptical domain with cassini oval hole. 
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