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Abstract 
S(X) is the semigroup, under composition, of all continuous selfmaps of the 

topological space X. In this paper, Banach's method in [8] is adapted to show that every 

countable subset of S(X) is contained in a 2- generated subsemigroup of S(X) when X is 

an IN-absorbing  space.  

 

1.Introduction 
Let X be an infinite set. In [1] SierpiÑski proved the following result: 

Theorem 1.1. Every countable family ଵ݂�ǡ ଶ݂�ǡ ǥ Ǥ ׷ � ՜ ���of maps can be 

generated by two such maps. 

In terms of semigroups, SierpiÑski proved that any countable subset of the 

semigroup ɒx, under composition, of all selfmaps on X is contained in a 2- generated 

subsemigroup of ɒx. A simpler proof was given by Banach in [8].    

However, the result of Evans [10], published 17 years later, that any countable 

semigroup can be embedded in a 2- generated semigroup follows at once from 

SierpiÑski's result. Higman, Neumann and Neumann in [4, Theorem IV] proved that 

every countable group is embeddable in a 2- generator group. 42 years later, Galvin 

in[3] proved that every countable set of permutations of X is contained in a 2-generated 

subgroup of the symmetric group SX. However, this permutational analogue of 
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SierpiÑski's theorem implies theorem IV in [4]. In [2] Mitchell and Péresse proved that 

any countable set of surjective maps on an infinite set of cardinality ʠn with n � IN can 

be generated by at most  ݊
ଶ
ʹൗ ൅ ͻ݊

ʹൗ ൅ ͹ surjective maps of the same set; and there 

exist ݊
ଶ
ʹൗ ൅ ͻ݊

ʹൗ ൅ ͹ surjective maps that cannot be generated by any smaller number 

of surjections. Moreover, in the same paper was presented that several analogous results 

for other classical transformation semigroups such as the injective maps, Baer ± Levi 

semigroups and the Schützenberger monoids. It is natural to ask if a result, analogous to 

theorem 1.1, holds when X is endowed with a topological structure.                                                                     

The symbol S(X) denotes the semigroup, under composition, of all continuous 

self- maps of the topological space X. It was shown in [9] that any countable subset of 

S(X) is contained in a 2- generated subsemigroup of S(X) when X is the rationals, the 

irrationals, the countable discrete space, the cantor space or m-dimensional closed unite 

cube. The main aim of this paper is, using an elementary technique and different from 

the one in [9], to prove that a result analogous to theorem 1.1 holds for IN-absorbing 

spaces.  

2. Definitions and theorems  
2.1 Theorem[1]. Let X be an infinite set. Then any countable subset S of ɒx  is contained 

in a 2- generated subsemigroup of ɒx . 

Proof[Banach].  Let the countably many members of S be 2ߠ�,1ߠ ǡ... . Partition X into a 

countable disjoint union of infinitely many sets X0,X1�«�;n�«�� DOO� RI� WKH� VDPH�

cardinality as X, and similarly partition X0 into X0,1,X0,2�«�;0,n�«�� DJDLQ� DOO� RI� WKH�

same size as the parent set X. 

/HW�ȕ ג ɒx be any mapping that maps Xn bijectively onto Xn+1 for all n ג Գ׫ሼͲሽǤ�Our 

VHFRQG�PDSSLQJ�Ȗ ג ɒx maps Xn bijectively onto X0,n IRU�DOO�Q������$OWKRXJK�ZH�KDYH�\HW�

WR�GHILQH�Ȗ�RQ�;0, we see that mapping įn  �ȕȖȕnȖ is awell-defined bijection of X onto 

X0,n. We may therefore complete the definition of Ȗ by putting  [įn Ȗ� �[șn , (x ג X). 

Since șn  �įn Ȗ�we obtain the factorization șn  �ȕȖȕnȖ2 (n ג Գ ). 
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2.2 Definition: A topological space is called an IN-absorbing  space  if it is the disjoint 

union of countable many infinite subspaces each homeomorphic to X. 

2.3 Theorem. Let X be an IN-absorbing  space. Then every countable subset of S(X) is 

contained in a 2- generated subsemigroup of S(X). 

Proof. Let X be an IN-absorbing  space  and   ሼ ௜݂ሽ௜ୀଵஶ  ���ሺ�ሻ.  Then by the definition, 

the space X can be Partitionated into countably many infinite non-empty clopen  subsets   

An  െ෥  ;��DQG�Q� ���������«����'HILQH��\: X՜X  by  \ (x) = Tn(x),                    

where Tn: An  െ෥An+1.                                                                                                     

It is obvious that \ is an embedding. Since A0 െ෥  X , it can be partitionated into 

countably many infinite non-empty clopen subsets B0n െ෥  A0െ෥  X and n=������«��   

We can define a homeomorphism  ן: X\A0 ՜ A0  by ן (x) = Rn(x) ,  where            

Rn: An െ෥  B0n DQG� Q ������«� �� 1RZ�� GHILQH� D� KRPHRPRUSKLVP� �         n: X ՜ B0n   byߠ

                                                   .Ǥ�                                            (ͳ)(x) \ ן n\ן

'HILQH�D�PDS�ȕ���$0�՜ ;�E\�ȕ�x) =� ௡݂  ���B0n ��7KXV��ȕ�LV�FRQWLQXRXV א�௡ିଵ(x), xߠ 

FOHDUO\���ȕߠ�n(x) = ௡݂  (x) for��xא��;�DQG�Q� ������«�����������������������������������������       (ʹ)  

Define  ߮: X ՜ X  by  

߮(x)=�൜ן��
ሺݔሻ���������Ǣ �ݔ��� א ᩞܣ̳��

Ⱦሺݔሻ����������Ǣ �ݔ� א ����ᩞܣ� .Then 

߮ is continuous as ן ܽ݊݀�Ⱦ are continuous and defined on disjoint clopen subsets  

of X. From(ͳ) and (ʹ), we obtain  ௡݂  (x)= ߮ଶ\௡�߮\(x) and Q� �������«�� 

In other words, ሼ ௜݂ሽ௜ୀଵஶ  �� ൏ \ǡ ߮ ൐. 

2.4 Corollary. Every countable subset of S(ܲ), where P is the irrationals, is contained 

in 2- generated subsemigroup of S(ܲ). 
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Proof. The space ܲ�െ෥���୍୒��and  ��୍୒ is the disjoint union of countable many infinite 

subspaces -��୍୒=U^>Q@�Q ��������««`��VR�LW�LV�an IN-absorbing  space . 

 The following is equivalent to the definition 2.2 

2.5 Lemma.  A topological space X is an IN-absorbing  space  if and only if                    

X �െ෥  X × IN.   

Proof. (
�֜

)obvious .                                                                                                 

(
�֚

)  If  f : X �െ෥  X × IN, then ݂ିଵ(X×{i}) is non-empty clopen subset of X and it is as a 

subspace homeomorphic to X=U{ ݂ିଵ(X×{i}) :  iא� ��}. 

2.6 Corollary. Every countable subset of S(Q) is contained  in a 2-generated 

subsemigroup of S(Q). 

Proof . By theorem (2.3) and lemma (2.5) and the fact that Qെ෥Q× IN . 

2.7 Corollary. Let  X be an infinite discrete space. Then every countable subset of S(X) 

is contained in a 2-generated subsemigroup of S(X).                                   

Proof. By theorem(2.3) and lemma (2.5) and the fact that  X �െ෥  X × IN. 

The space L = C \{p} for p � C, where C is the Cantor space, is unique up to 

homeomorphism [5]. 

2.8 Corollary. Let  L = C \{p} for p � C. Then every countable subset of S(L) is 

contained in a 2-generated subsemigroup of S(L). 

Proof. The space L is the unique locally compact, non-compact perfect zero-

dimensional space, so homeomorphic to L × IN and by theorem (2.3) and lemma (2.5) 

the proof is completed. 
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