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Abstract
In the present paper, we obtain Fekete-Szego inequalities and sharp bounds for some

subclasses of analytic and p-valent functions in the open unit disk defined by certain

fractional derivative operator.
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Introduction And Definitions
Let A(p) denote the class of functions defined by

F@) =22+ ) e 2™, (p €N) (1.1)

which are analytic and p-valent in the open unit disk U = {z: |z| < 1}.

Let f(z) and g(z) be functioning analytic in U, we say that the function f(z) is a
subordinate to g(z), if there exists a Schwarz function w(z), analytic in U, with
w(0) =0and |w(z)| <1 (z € U), suchthat f(z) = g(w(z)) forallzeU.

This subordination is denoted by f < g or f(z) < g(z). It is well known that, if the
function g(z) is univalent in U, f(z) < g(z) if and only if f(0) =g(0) and
fU) e g(W).

Let ¢(z) be an analytic function with ¢(0) =1, ¢'(0) >0 and Re(¢(2)) >

0 (z € U), which maps the open unit disk U onto a region starlike with respect to 1
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and is symmetric with respect to the real axis . Ali et al. [1] defined and studied the class

Spp (@) to be the class of functions f(z) € A(p) for which

1(1 zf'(2) 1 U, b € C\{0 1.2
B{Em_ }<¢(Z), (ZE 4 € \{ }) ()
and the class Cp, ,,(¢) of all functions for which
1 1 zf"(2)
1-3+ E{ 1+ i) } < ¢(2), (z€UDbeC\{0}) (1.3)

Note that S7,(¢) =S5"(¢) and C;,(¢p) = C(¢), The classes were introduced and
studied by Ma and Minda [2]. The familiar class S*(«a) of starlike functions of order «
and the class C(a) of convex functions of order a, 0 < a < 1 are the special cases of

S11(¢) and Cy 1 (¢), respectively, when

1+ -2a)z

(@) =———

We recall the following definitions of fractional derivative operators which were
used by Owa [4] and see [6] and [7] as follows:
Definition 1.1. The fractional derivative operator of order A is defined, for a function

f(2), by

d (% f@©
A-Ndz)y, -7

D}f(z) = T ¢, 0<a<1 (1.4)

where f(z) is analytic function in a simply-connected region of the z-plane containing
the origin, and the multiplicity of (z — &)~ is removed by requiring log(z — &) to be
real when z — & > 0.

With the aid of the above definition, we define a generalization of the fractional

derivative operator Qéf by

rl+p-—24)
'l +p)

for f(z) € A(p), p€N and 0<A<1. Then it is observed that Qg,’f f(z) maps

QP f(2) = 2% D§,1f (2) (1.5)

A(p) onto itself as follows:

QL@ =27+ ) 9u(Ap) ayin 27T (16)
n=1

(314)



ISSN: 2706-9087

ISSUE

Avduhilly Auluwilll aglsell dlaa

Journal of Hamanitarian and Applied Seiences
— e N

DESEMBER 2019

where

TM+p—-ATA+p+n)

A+ pra+p—a+m’ TN a7

Pn(4,p) =
We let ¢, (1,p) = ¢, , and notice that
WL (@) = f(2),
and

arr =2 p()

Motivated by the classes Sj, ,(¢) and Cp,,(¢) which were studied by Ali et al. [1],
we introduce a more general class of complex order S,i"p' p(¢) which we define in the
following.

Definition 1.2. Let ¢(z) be an univalent starlike function with respect to 1 which maps

the open unit disk U onto a region in the right half-plane and symmetric with respect to

the real axis, ¢(0) =1 and ¢'(0) >0 . A functions f(z) € A(p) is in the class

Shop(9) if

2(Qi2F()) + B2 (242 ()
(1 - B) Q2f(2) + B (QU2f (@)

where b€ C\{0}, 0SB <1, 0<A1<1, peN and z€U. Also, welet S} 2(¢) = S} ().

1+

=17 < ¢(2), (1.8)

S|
T |-

The above class S{},p,ﬁ(cp) i1s of special interest and it contains many well-known
classes of analytic functions. In particular; for A = 0 and f = 0, we have
Sppo(P) = Spp(¢)
where Sy ,,(¢) is precisely the class which was studied by Ali et al. [1], while for 1 = 0
and f = 1, we have
Sl?,p,l(¢) = Cb,p (‘I—”)
where Cp, ,(¢) is precisely the class which was introduced by Ali et al. [1].
Furthermore, by specializing the parameters A, b,p and f we obtain the following
subclasses which were studied by various others:
I- For 1=0,b=1,p=1 and f =0, we get the class 57, ,(¢) = S*(¢)
which was studied by Ma and Minda [2].
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2- For 2=0, b=1,p=1 and B = 1, we get the class S, , (¢) = C(¢) which
was studied by Ma and Minda [2].

3- For A=0,p =1 and B = 0, we have the class Sy, ¢(¢) = S;(¢) which was
studied by Ravichandran et al. [5].

4- For A=0,p =1 and B = 1, we have the class Sy, o(¢) = C,(¢p) which was
studied by Ravichandran et al. [5].

5- For =0, b=1 and B =0, we get the class S7, o(¢) = S;(¢) which was
studied by Ali et al. [1].

Very recently, Ali et al. [1] obtained the sharp coefficient inequalities for functions
in the class S ,,(¢) and many other subclasses of A(p).

In the present paper, we obtain Fekete-Szego inequalities of the functions belonging
to the classes Sf,p, p(¢) and S ;L,p,ﬁ (¢). These results are extended to the other classes
that were defined earlier. See [1], [2] and [5] for Fekete-Szegd problem for certain
related classes of functions.

Let Q be the class of analytic functions of the form

w(z) = wyz + wyz? + -
in the open unit disk U satisfying the condition |w(z)| < 1. In order to prove our main

results, we need the following lemmas which shall be used in the sequel.
Lemma 1.3 [1]. If w € Q, then
lw, —tw?|<{ 1 if —1<t<1,
t  if t>1
when t < —1 or t > 1, equality holds if and only if w(z) = z or one of its rotations.
If —1 <t <1, then equality holds if and only if w(z) = z2 or one of its rotations.

Equality holds for ¢ = —1 if and only if

A+z
1+Az’

or one of its rotations, while for ¢ = 1, the equality holds if and only if

w(z) =z (/-]

A+z
1+Az’

w(z) = -z 0<21<1)

or one of its rotations .
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Although the above upper bound is sharp, it can be improved as follows when
-1<t<1:
lw, —tw?| + (t+ Dwy |2 <1, (-1<t<0)
and

lw, —tw?|+ (1 —-t)wy|? <1, o<t<1).

Lemma 1.4 3, inequality 7, p.10]. If w € Q, then for any complex number ¢,
|w, — tw?| < max(1, |t]).

The result is sharp for the functions w(z) =z or w(z) = z2.

1- Coefficient bounds

By making use of Lemmas 1.4-1.5, we prove the following:

Theorem 2.1. Let ¢(z) =1+ B,;z+ B,z?+ -+, where B, s are real with B; >
0,B, = 0, and @ is a real number and

_ i1+ pp)*[(B, — By) + pBi]

N = T B[ + Bp)? — B @D
. = ®2(1 + Bp)?[(B, + B,) + pB?] 22)
g 2¢,pB2[(1 + Bp)? — B2] '

_ @i(1 + Bp)?[B, + pBf] 2.3)

% = 20,pB7[( + Bp)? — A
If f(z) given by (1.1) belongs to the class S;’B (¢p) and @4, @, given by (1.7), then

p (1+B(—1) 209, B?
267 (TT A6 T 1)>{BZ PBi [1‘ p (1‘ (1+ﬁp)2>] 0=
. pB, (1+B(p—1)
|ap+2 — 9a,,+1| < E(m) o, < 6 < gy
p (1+B(—1) , [209; B? ]
272(1+B(p+1)){‘32 trh [ . <1_(1+ﬁp)2>_ 1_} =0
(2.4)

Further, if 0, < 0 < 03, then
2 2 2
i(1+ Bp) { B, [294’2 < B ) ] }
Appp —Ba2. | + 1-——+ 1-— —1|pB; tlay1]?
A VTN (s ez G Tl I 1+ pp)? PEiflape|
<p_31<1+l3(p—1)>
20 \1+B(p+ 1)
If 03 <8 <o0,,then

(2.5)
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@i (1+pp)® B, [26¢, p?
WWQ_9%*”+2¢m8du+ﬁnﬂ—ﬁﬂ{1+ﬁi_[¢f<1_Gﬂﬁmﬁ>_4p&}”“dz
pBy (1+B(p—1)
= 2—(pz<1 T 1)) (26)
For any complex number,
pBy (1+B(p—-1) 209, B? B,
lapsz — 0az,,| < Z—%(W) max {1, | - (1 “ax ,Bp)z) pB; — B~ pB; } 2.7
The results are sharp.
Proof. If f(z) € Sg’ (), then there is a Schwarz function
w(z) =wiz+wz%2 + €EQ
such that
1 2(Qi2F@) + 22 (QU2F @)
1 (05 : ) ( 0/1 ) = (W) (2.8)
P(-p)2f@)+p(Q2f@)
since
1 2(2f@) +p22 (Q2f @) . (+pp) .
- T = — $10p4+12
Pa-pailr@ +p(odirw)  PRTAeTD
2(1+B(p-1) 1+ Bp)®
_%5Q+B@+1Q¢ﬂ“2_m1+Mp—DP¢ﬁ%1ﬁ+"' @
We have from (2.8),
_ p[1+ B — D]Biw,
W =T, A+ Bp) (2.10)
and
1+ -1
Api2 = %(%) {Byw, + (B, + PB12)W12} (211)
Therefore, we have
PB. (1+B(p -1
Uiz —0ap4q = i(m) {w, —vwi} (2.12)
where
{209, B? B,
V= [ py (1 - a+ ﬁp)z) - 1] pB, — 3_1 (2.13)

The results (2.4)-(2.7) are established by an application of Lemma 1.3 and inequality (2.7) by Lemma 1.4.
To show that the bounds in (2.4)-(2.7) are sharp, we define the functions Ky, (n = 2,3,...) by

(318)



ISSN: 2706-9087
ISSUE bt |
dwduhillg duluilll aglsell dlaa N\

urnalf Samanesion ond fyplid i (8)

DESEMBER 2019 2019 4y

1 2(QF K@) + B2 (MK (2)) ,
L (o i ) (°A¢ )'=¢@mw, Kpn(0) = (Kgn) (0) =1 =0
P (1= ) QT Kpn(@) + B (T Ky (2) )

and the functions F., G, (0 <r < 1) defined by

"

l z (QgﬁFr(z))' +Bz* (Qf},’gFr(Z)) _ o (z(z + r))
)' )

F(0)=F'(0)—1=0

P 1-p) Q@) + B (QE @) L
and
17z (Qg.'gGr(Z))’ +pz* (QS‘,’gGr(z))” z(z+r) ,
D = (_1+rz>' (0 =6(0)-1=0

(1= B) 26.(2) + B (Q476.(2))
respectively, it is clear that the functions Ky, , - and G, belong to the class Sz/}, B (¢). If
0 <o, or 6> o0, then the equality holds if and only if f is Kg, or one of its
rotations. If 07 < 6 < 0, , the equality holds if and only if f is Kg3 or one of its
rotations. If 6 = gy , then the equality holds if and only if f is F. or one of its
rotations. If 6 = o0, , then the equality holds if and only if f is G, or one of its

rotations.

Theorem 2.2. Let ¢(z) =1+ B,z + B,z?+ -+, where B, s are real with B; >
Oand B, = 0.

If f(z) given by (1.1) belongs to the class S;"p'ﬁ (¢p) and ¢4, @, given by (1.7), then for

}

(2.14)

any complex number 8, we have

plb|By (1+pF(p—1) 200, ,82 B,
- 2 < - — ——
(@12 = 00| < 2, (1 + B+ 1)) max b 5 RN EY B L

The result is sharp.

Proof. The proof is similar to the proof of Theorem 2.1.
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