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Abstract

In this paper, a numerical method is presented for finding the solution of
differential equations. The main objective is to find the approximate solution of
fractional differential equation of order « . This work is a comparison of some available
numerical methods for solving linear "nonlinear" DEgs. of fractional order. However,
all the previous works avoid the term of fractional derivative and handle them as a
restricted variation. The present study shows that when these methods are applied to
linear "nonlinear" DEgs. of fractional order, they have different convergence and
approximation error.

Keywords: Fractional Calculus, Caputo fractional differential equations, Picard
iteration, Gauss-Seidel method, Variationaliteration method.

1. Introduction

In recent years, the theory and applications of fractional equations were presented
research topics in applied sciences; such as applied mathematics, physics, mathematical
biology and engineering. The rule of fractional derivative is not unique date.Over the

Past decade the development of numerical methods used for finding solutions of
ordinary fractional differential equations containing derivatives of integer and non-
integer order. There have been several algorithms published for producing approximate
solutions for fractional differential equations.

The developments of theory and applications for approximate solutions of fractional
differential equations have been completed. We refer to the articles, which work by
authors as Diethelm, Ford [ see; 8, 9, 10, 11,12,13].

The approximations and numerical techniques for differential equations of fractional
order have been main objective in researches. Hence, there are some papers discussing
numerical methods for solving fractional differential equations. Also, most the fractional
equations do not have exact analytic solution. Consequently, we must used approximate
and numerical techniques.

Recently, the analytical approximate solution for linear fractional differential equations
with initial conditions has been used in [18]. The applications of methods for fractional
equations was extended by authors in [14,18]

In this paper, we study the numerical approximate solution for linear differential
equations of fractional order:

PO)Du(t)+a,u™ t)+a, u" ") +..+au ¢)+au ¢)+aput)=£ () (1.1)
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Subject to initial conditions:
u(i)(O):ﬂi Jd=12,...m-1 (1.2)

where a,,3 e R are constants  €[0,T ]; m —1<a <m; f:JxRxR—>Risa

continuous function,and P(¢) is known function. Here the notation D “is used for
Capote fractional derivative.
Diethelm, to solve the linear and non-linear differential equations recently used methods
are Predictor-Corrector method [11], Adomain decomposition method [19, 20, 22],
Homotopy Perturbation Method [12] Variational Iteration Method [15], in [21] the
author using differential transform method to solving systems of fractional differential
equations.
The approximate solutions have been obtained via several classes of fractional
differential equations, where in [17] introduced discussing for approximate an ordinary
fractional differential equation by the integer order differential equation with a small
parameter and permits to find their approximate symmetries.
In this article, we study fractional differential equations associated to the a derivative.
Such kind of equations appears in many problems. In particular, we have find a
fractional differential equation related to the classical Gauss-Seidel method [3], and then
comparison with the variation iteration method [23], which is confirmed through some
examples.
The purpose of this study is to introduce approximate solutions for fractional differential
of ordera ,a>0equations by using modified Picard iteration with Gauss-Seidel
technique, which proposed by he [3] was successfully applied to solving linear
(nonlinear) system of ordinary differential equations with initial conditions.
2. Definitions and properties in fractional calculus

In this section, we consider the main definitions of fractional derivatives of order « ,
a >0, The Caputo and the Riemann-Liouville fractional derivatives [4] are both used
here Whereasin mathematical treatises on fractional differential equations the Riemann-
Liouville approach to the notion of the fractional derivative of order @ . we begin by
introducing the basic definitions:
Definition 2.1.A real functionf (¢),z > 0, is said to be in the space C,, ueRR, if there

exists a real number p > gsuch that / (t)=t"f,(¢), where f,(t) €C [0,4), it's
clearly, C,cCyif g<pu.
Definition 2.2.A function f (¢),z >0, is said to be in the space C ] if f "M ecC . for

m € N U {0}.
Definition 2.3. The Riemann-Liouville fractional integral operator of order & > 0 of a
function f € C,,u>1,is defined as:

01,“f(t)=$jo’(t—s)“-lf(s)ds, a>0, t>0 (2.1)

oA SO =)

where F() is the Gamma function.
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Definition 2.4. The fractional derivative of f (t ) in the Caputo derivative is
defined as fOIIOWS'

c mea A"
DI (O) = I (@t —s)" " ——f (s)ds (2.2)
ds
where m —1<a£m, me N, f C;",werewrite last formula as the form:
I"°f"@)y , m-l<a<m, me N
DS ()= d" (2.3)
t , a=m

Hence, we have the following properties for f € C . and x> -1 have been proved;
refer to the works [1, 2, 4, 6, 7, 16]:

1_ Oltatk — r(k +1) toH—k
'k +1— @)

2- DI ) =1 (t)
emara n-1 N Zk
3 DA 0= O-2f O) 150
k=0 .
4- SDtﬂf(t)zolta_ﬂgD,af(t) 5 Q’,ﬂ>0

The existence, uniqueness, and structural stability of solutions of nonlinear differential
equations of fractional order. It had been discussed in [10].

Theorem 2.1 (existence). Assume that D :=[0, t*] X [1e® — &1, + e]with some
t"> 0 andsomee> 0, and let the function f : D— R, be continuous. Furthermore,
define x = min {t*, (T (a+1)/ ||f||oo)1/°<}. Then, there exists a function

u: [0, x] - [R{solving the initial value problem
D" (u- T, )y =/ (@), u” )= u’,j = 01,2.m- 1,

where 7 [u] 1s Taylor Polynomial of orderm - 1 for « .

) a>0, ke NU{0}, >0

Theorem 2.2(uniqueness). Assume that D= [0,¢ ]’ [uéo)- e,uéo)-i- e] with some

t"> 0 and somee > 0. Furthermore, let the functionf : 9— R be bounded on 9P and
fulfill a Lipschitz condition with respect to the second variable; i.e.,

\f tu)- f(tu )€ L|u- u"| with some cons. L>0

For the proofs of these two theorems, which was proved by applying the integral
operator of order « , given by (see; [10])
L O =—— [ (€ =) f (s)ds (2.4)
['(a)-°
3. Material and methods
In this section we will extend iteration method of fractional calculus, we review the

classical method of successive approximation "Picard iteration", firstly, and so we use
modified Picard iteration with Gauss-Seidel technique are given in [3].
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Therefore, rewrite fractional differential equation (1) as the system of differential
equations of first order, then equation (1) is transformed into the following ; let

u, (£)=u(®)

U, =u,

U, =, (3.1)

uy =f ()= PODUt)=a,u, ) =a, u, €)= ..—au;t)—au, ) —au,t)

subject to initial conditions:

u,(0)=4, i=L2,.,m 3.2)
Accordingly, the Picard iteration method for system of differential equations (3.1) is

obtained by the replacement of every equation in (3.1) by using Gauss-Seidel technique,
the result takes the form:

t
u, =u,+ _[0 U, (s )ds

u2,n :u2,0 + I;u_“a,nfl (S )ds n= 13 29 (33)

t
um,n :um,O +Io(f(s)_P(S)Daul,;1 (S)_amum,n—l(s)_am—lum—l,n (S)_"’_aIMZ,n (S)_aoul,n (S))dS

subject to initial conditions :
u,(0)=4, i=12,.,m

Consequently, the variational iteration method of fractional differential equation (1.1)
with initial conditions(2) can be constructed as the form(see,[23]):

u, =u, )+ [ APE)Du, ((5)+a,D"ut, \(s)+a, D, ((s)+..

wtraDu, (s)+au, (s)—f (s)ds (3.4)
t>0, n=12,..

m

where D" = d

and A1is a general Lagrange multiplier. If we repeat the above

m >

procedure, we have numerical solutions of fractional differential equations for (1.1).

4. Illustrative Examples

In the following examples, we consider numerical solutions of fractional differential
equations of order « , to demonstrate the effectiveness of the method.

Example 1. We consider the following fractional differential equation

WD =2— 2 —— S (4.1)

N/
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with initial conditions #(0) =u'(0)=0 ,u"(0)=2, 0<¢ <1;
The corresponding system takes the form:

u ' =u u (0)=0
| = U, 1(0) 42)
U, =2-2f ——— ¢ 4u, +D°u 1,(0)=0
2 3\/— 2 1 2
Accordingly, the classical Picard iteration method takes the form
1+ d. =12
ul’n B +J-0u2,n—l S, n=1,s,... (43)

u, =—l1+[ (@2-25 - s2+u +Du )ds
n 0 2,n-1 1,n—1

3\/__

Hence, the corresponding modified Picard iteration with Gauss-Seidel technique the
integral will be came:

ul,n :1+J.;u2,n—ldsﬂ n :1,29-.. (4 4)

t 8 1
uln::—1+:&(2(1—s)——3\ﬂgs +u,,  +Du,, )ds

Table 1: shows the approximate solutions for Eq. (4.1) obtained for different methods.
The results showed that the modified Picard iteration with Gauss-Seidel method is
remarkably effective and performing is very easy. Additionally, it has more accuracy
than Picard method and variation iteration method.

t; Exact PI Z{g Av/[vzth |u - Upgg | VIM |u - Uy, |
0.0 | 0.00| 0.00 0.00 0.00 0.00 0.00

0.1 | 0.01 | 0.01 0.01 4.01971" 1079 0.01 3.46178" 10"
0.2 | 0.04 | 0.0400021| 0.04 9.41858" 107’1 0.03999999996¢ 3.75077 " 10
0.3 | 0.09| 0.0900205 0.09 2.35103" 10| 0.08999999924 7.56081" 10"
0.4] 0.16 | 0.160106 | O0.16 2.33746° 107| 0.15999999207 7.93355" 10°

0.5] 0.25| 0.250382 | 0.250001| 1.39986" 10°| 0.24999994397 560354° 10°
0.6 | 0.36| 0.361092 | 0.360006| ¢ 07411" 10°| 0.359999703 14 2.96859" 10~
0.7/| 0.49 1 0.492655 | 0.490021| 0.0000210781| 0.4899987376% 126235 10°
0.8] 0.64 | 0.64574 0.640062| 0.0000620574] 0.6399954786% 452131 10°
0.9 0.81| 0.821332 | 0.810161| 0.00016105 0.80998587172 0.0000141283

1.0 | 1.00 | 1.02082 | 1.00038 | 0.000378167 | 0.999960462 | 0.0000395377

Table 1: shows the approximate solutions for Eq. (4.1)
eighth iterations which was obtained for different methods
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Now, we compare the seventh and eighth iterations Picard iteration, modified Picard
with Gauss-Seidel method and variation iteration method with the exact solution on the
graphs. These comparisons can be seen in figures 1, 2.

g

Picard
.............. PI with GSM
VIM

Exact
Picard
.............. PI with GSM

VIM

Exact

i [/ -
| srrraaaa |
"eadese | / 5
Tttt P with GS\i
15 [/ 10 "ede
L;E-JI \ L] |
P e

Figure 2: Comparison of eighth iteration approximate results of modified
GSM and VIM with the exact solutions for eq. (4.1).

Example 2. We consider the following fractional differential equationof ordera = 4

P (4.5)
N
With initial conditions #(0) =0, u'(0)=-1,u"(0)=1, 0<¢ <1;

Applying the modified Picard iteration with Gauss-Seidel method, we get the following
corresponding system:

1
u"+D*u+u'=

n U +Iouz,n—1ds u,(0)=0

U,

o [0 o =T DR 0=

(268)
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Table 2: shows the approximate solutions for Eq. (4.5) obtained for different methods.
The results showed that the modified Picard iteration with Gauss-Seidel method is
remarkably effective and performing is very easy. additionally, it has more accuracy
than Picard method and variation iteration method.

t; Exact PI PI with GSM |u - Upos | VIM | - Uy, |
0.0 0.0 0.0 0.00 0.00 0.0 0.0

0.1 | - 0.095 | - 0.095 - 0.095 3.94032° 107 | -0.0942578 | 0.000742164
0.2 | - 0.18 - 0.18 - 0.18 1.23321° 107'° | -0.176293 | 0.00370736
0.3 | - 0255 | - 0255002 | - 0.255 3.6863" 107 0.246077 | 0.00892336
0.4 | - 032 |- 0320009 | - 0.32 4.18749° 10° | -0.304239 | 0.0157607

0.5 | - 0.375 | - 0375026 | - 0.375 2.79196° 107 | -0.351864 | 0.0231364

0.6 | _ 042 |- 0420059 | - 0.420001 | 132694 10° | -0.390581 | 0.0294194

0.7 | - 0.455 | - 0455116 | - 0.455005 | 4098825 10° | -0.422926 | 0.0320741

0.8 | _ 048 |- 04802 |- 0.480016 | 0.0000157847 | -0.453061 | 0.0269391

0.9 1 _ 0.495 | - 0495315 | - 0.495044 | 0.000043773 | -0.488049 | 0.00695145
LO | _ o5 - 0.500463 | - 0.500109 | 0.000109352 | -0.539968 | 0.0399684

Table 2: shows the approximate solutions for Eq. (4.5)
seventh iteration which was obtained for different methods.

The compare of the sixth and seventh iterations for Picard iteration, modified Picard
with Gauss-Seidel method and variation iteration method with the exact solution appear
on the graphs. These comparisons can be seen in figures 3,4. The results are in good
agreement with the results of the exact solutions.

10

Exact
ssssees Picad
PIwintGS

Exzct

wuweeee Pice

- o ww PIWINtGS
VIM

i « e
. | ..". EXACT |
5 - ‘ - X 0.0 LR R}
TU\L“*-M_, ofid Pcl s || 10, P.“'.lt:l :}S.\I |I
15, [ / Py a iy ()
Q:ZIM"‘x 7 T T, [| /
20 e |

Figure 4 Comparison of seventh iteration approximate results of modified
GSM and VIM with the exact solutions for eq. (4.5).
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Example 3. We consider the following fractional differential equationof ordera = %

s 3
itg 4 +6t—£t—£

N 6 12 12
*F ,0<1r <1;

u"—tD%u +u'=3t7 - 4.7)

with initial conditions ,(0)=0, 1'(0)=0 , u"(0)=

Applying the modified Picard iteration with Gauss Seidel method, we get the following
corresponding system:

uy, =ty + [ s, ds u,(0)=0 , u,(0)=0 (4.8)
s
U,, =, +I(: (3s? - 8 LT LR —£s —£s —Uy, —sD%ul’n Xs
Jr 6 12 12
Table 3: shows the approximate solutions for Eq. (4.7) obtained for different methods.
The results showed that the modified Picard iteration with Gauss-Seidel method is
remarkably effective and performing is very easy.
t; Exact PI PI with GSM |u - Upes | VIM | - Uy, |
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.000261478 | 0.000261477 | 0.000261478 1.82736" 10" | 0.000261478 | 3.01696" 10
0.2 | 0.00504591 | 0.00504588 | 0.00504591 6.10811" 10 | 0.00504591 | 3.9601" 107
0.3 0.0203533 0.0203526 0.0203533 3.3046° 107 0.0203533 8.11533" 10™
0.4 0.0521836 0.052177 0.0521836 6.51023" 10° 0.0521836 8.56785" 107"
0.5 ] 0.106537 0.1065 0.106537 5292527 10° | 0.106537 6.12635" 107
0.6 | 0.189413 0.189261 0.189413 2.69198" 107 | 0.189413 3.26002" 10
0.7 0.306812 0.30632 0.306813 9.78959" 107 0.306812 1.3515" 107
0.8 0.464735 0.463394 0.464737 2.61633" 10° 0.464734 437791 107
0.9 1066918 0.665988 0.669184 4.56682° 10° | 0.669179 1.01397" 10°
1.0 0.926148 0.919333 0.926148 2.89022" 107 | 0.926147 8.00177" 10~

Table 3: shows the approximate solutions for Eq. (4.7)
ninth iteration which was obtained for different methods.

We compare the eighth iteration and ninth iteration .For Picard iteration, modified
Picard with Gauss-Seidel method and variation iteration method with the exact solution
on the graphs. These comparisons can be seen in figures5,6. The results are in good
agreement with the results of the exact solutions.
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Figure 5 Comparison of approximate results for different methods

Figure 6 Comparison of ninth iteration approximate results of modified
GSM and VIM with the exact solutions for eq. (4.7).

Example 4. We consider the following fractional differential equation of ordera = %

5
U2 D U —u " = 2 2t g2 (4.9)

N

with initial conditions « (0) = 0,u '(0) = 0,u "(0) = 0,u "(0) =2, 0<z <1.

Applying the modified Picard iteration with Gauss-Seidel method, we get the following
corresponding system:

t
Uy, =, +J.0u2,n_lds u,(0)=0 @10)

U,

N

=u,, +J‘Ou3,n_1ds u,(0)=0

5
t 4 = 5
Uy, =, +I0 (2-2s +—=s2 +u,, | —s’D’u,, Ys U, (0)=0

Jr

Q71)
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Table 4: shows the approximate solutions for Eq. (4.9) obtained for different methods.
The results showed that the modified Picard iteration with Gauss-Seidel method is
remarkably effective and performing is very easy.

t; Exact PI PI with GSM |u - Upge | VIM | - Uy, |
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 | 0.000333333 0.00033345% 0.000333333 1.18804" 10" 0.000333333 1.75966" 107
0.2 | 0.00266667| 0.0026707 | 0.00266668| 1.69048" 10%| 0.00266667| 9.24512" 10°'}
0.3 | 0.009 0.00903215| 0.00900028| 2-78192" 107 ¢.009 2.7276° 10"
0.4 | 0.0213333 | 0.0214765 | 0.0213352 | 1.90339" 10| (0213333 | 1.99798" 10"
4 -6
0.5 | 0.0416667 | 0.0421287 | 0.0416746 | 7-96436" 107 (0416667 | 1.01595" 10"
0.6 0.072 0073213 | 0.072024 | 00000240288 -, 7.1958° 1070
0.0000566307 . o
0.7] 0.114333 | 0.117087 | 0.11439 0000108142 | 0-114333 | 6.15714" 10
0.8 ] 0.170667 | 0.176271 | 0.170775 02000168016 0.170667 | 3.06034 107
0.9 | 0.243 0.253458 | 0.243168 | (000204398 | 0.243 9.82856° 10*
1.0 | 0.333333 | 0.351508 | 0.333538 0.333333 | 9.28892" 10°

Exact
Picard

Table 4 shows the approximate solutions for Eq. (4.9)
eighth iteration which was obtained for different methods.

The comparison of the seventh and eighth iterations Picard iteration, modified Picard

with Gauss-Seidel method and variation iteration method with the exact solution appear
on the graphs. These comparisons can be seen in figures 7,8 The results are in good
agreement with the results of the exact solutions.

.......

VIM

o DIWRIGS

0.0

Figure 8 Comparison of eighth iteration approximate results of modified
GSM and VIM with the exact solutions for eq. (4.9).
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5. Conclusion

The fundamental goal of article is to construct the approximate solutions of
fractional derivatives of order «.the aim has been achieved by using the classical Picard
method, the modified Picard method and compared them with VIM to investigate the
efficiency of improved Gauss-Seidel technique against classical Picard iteration and
comparison to the VIM. Those methods are based on the numerical approximation of
the fractional derivatives and integral in the continues time. Although several of the
earlier papers rely on the smoothness of the solution to prove results on the rates of
convergence. This is the classical approach from ordinary differential equations.
However, for fractional equations even polynomial solutions may become non-smooth
following fractional order differentiation. Therefore we explore briefly whether the
form of the solution affects the performance of the method. Consequently, the modified
method is a powerful and efficient technique for the solution linear fractional
differential equations. It provides the analyst with an easily computable, readily
verifiable and rapidly convergent sequence of analytic approximate functions for the
solution, and also are relatively better as expected.
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