218925167620+ / 218919656575+ / 218916307390+ / 218911653137+
kshj@elmergib.edu.ly
رقم الإيداع المحلي
95 / 2020
دار الكتب الوطنية بنغازي
ISSN: 2706-9087
المجلد السابع
العدد الخامس عشر لشهر يونيو 2023

رجوع

Existence and Uniqueness of the approximation Solutions To the Boundary Value Problem for Fractional Sturm-Liouville Differential Equations with the Caputo Derivative
وجود و وحدانية الحلول التقريبية لمشكلة القيمة الحدية للمعادلات التفاضلية شتورم لوﭬــــيل الكسرية مع المشتق Caputo

تاريخ الاستلام:02/01/2023

تاريخ التقييم: 28/01/2023

Pages:320-327

مفيدة معمر صالح أحمد
Mufeedah Maamar Salih Ahmed
الملخص:

الهدف من المقال هو دراسة وجود الحل التقريبي و وحدانيته لمشكلة القيمة الحدية لمعادلة شتورم لوﭬــــيل الكسرية مع المشتق Caputo في فضاء بنـاخ. حيث قمنا بإثبات بعض النظريات حول وجود الحل و تفرده لـــــ FSLP و من ثم قمنا بتوسيع نظرية النقطة الثابتة لـــــ ODEs لتشمل مشكلة Fractional Sturm-Liouville ذات الشروط الحدية، و بعد ذلك ثم الحصول على الحل التقريبي بواسطة الطرق التقريبية و هي طريقــــتي بيكـــارد و مان –كراسنوسلســـكى التكــرارية.

Abstract:

In this paper, the researcher investigated the Fractional Sturm–Liouville boundary value problem with the Caputo derivative and studied the existence and uniqueness of its solution in Banach space, in addition to the continuation of its solution. As the result, researcher proved some theorems on the existence of solutions for FSLP and then extend a Fixed-Point theorem for ODEs to this of the Fractional Sturm–Liouville problem with boundary conditions. Also, the given problem by obtained via the constructing approximate solution by Picard and Krasnoselskij-Mann iterations.
Keywords: Fractional Sturm–Liouville Problem, Caputo fractional derivatives, iterative methods, contraction and non-expansive mapping, Fixed-Point theorem.

المراجع References

1. El-Sayed, Ahmed, and Fatma M. Gaafar. “Existence and uniqueness of solution for Sturm–Liouville fractional differential equation with multi-point boundary condition via Caputo derivative.” Advances in Difference Equations 2019.1 (2019): 1-17.
https://doi.org/10.1186/s13662-019-1976-9
2. Buica, Adriana . “Existence and continuous dependence of solutions of some functional-differential equations.” Seminar on Fixed Point Theory 3.1 (1995): 1–14.
3. Granas, Andrzej, and James Dugundji. “Fixed point theory.” Vol. 14. New York: Springer (2003).
4. Agarwal, Ravi P., Yong Zhou, and Yunyun He. “Existence of fractional neutral functional differential equations.” Compu. & Math. with Applications 59.3(2010): 1095-1100.
5. Kilbas, Anatoliĭ Aleksandrovich, Hari M. Srivastava, and Juan J. Trujillo. “Theory and applications of fractional differential equations.” Vol. 204. Elsevier (2006).
6. Băleanu, Dumitru, and Octavian G. Mustafa. “On the global existence of solutions to a class of fractional differential equations.” Computers & Mathematics with Applications 59.5 (2010): 1835-1841.
7. Bayour, Benaoumeur, and Delfim FM Torres. “Existence of solution to a local fractional nonlinear differential equation.” Journal of Computational and Applied Mathematics 312 (2017): 127-133. doi:10.1016/j.cam.2016.01.014
8. Chidume, Chidume. “Geometric properties of Banach spaces and nonlinear iterations.” London: Springer (2009). doi:10.1007/978-1-84882-190-3
9. Alecsa, Cristian. “On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces.” International Journal of Nonlinear Analysis & Applications 8.1 (2017): 353-388
https://doi.org/10.22075/ijnaa.2017.11144.1543
10. Delbosco, Domenico, and Luigi Rodino. “Existence and uniqueness for a nonlinear fractional differential equation.” Journal of Mathematical Analysis & Applications 204.2 (1996): 609-625. https://doi:10.1006/jmaa.1996.0456
11. Diethelm, Kai, and Neville J. Ford. “Analysis of fractional differential equations.” Journal of Mathematical Analysis & Applications 265.2 (2002): 229-248.
https://doi:10.1006/jmaa.2000.7194
12. Diethelm, Kai. “The analysis of fractional differential equations.” Lect. Notes in Math. . Springer (2010). https://doi:10.1007/978-3-642-14574-2
13. Das, Shantanue, “Functional Fractional Calculus for System Identification and Controls”. Springer (2008). https://doi:10.1007/978-3-540-72703-3
14. Deng, Jiqin, and Lifeng Ma. “Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations”. Applied Mathematics Letters 23.6 (2010): 676-680. https://doi.org/10.1016/j.aml.2010.02.007
15. El-Sayed, Ahmed MA. “Fractional order differential equation”. Kyungpook Mathematical Journal, 28(1988): 119-122.
16. Picard, Emile. “Mémoiresur la théorie des équations aux dérivéespartielles et la méthode des approximations successive”. Journal de Mathématiques pures et appliquées 6 (1890): 145-210.
17. Hilfer, Rudolf, ed. “Applications of Fractional calculus in Physics”. World scientific, (2000). https://doi.org/10.1142/3779
18. Ibrahim, Rabha W., and Shaher Momani “On the existence and uniqueness of solutions of a class of fractional differential equations.” J. of Mathematical Analysis and Applications 334.1 (2007): 1-10. https://doi.org/10.1016/j.jmaa.2006.12.036
19. Batiha, Iqbal M., et al. “Existence and uniqueness of solutions for generalized Sturm–Liouville and Langevin equations via Caputo–Hadamard fractional-order operator.” Engineering Computations 39.7 (2022): 2581-2603. https://doi:10.1108/EC-07-2021-0393
20. Park, Jong-An. “Mann-iteration process for the fixed point of strictly pseudo contractive mapping in some Banach spaces.” Journal of the Korean Mathematical Society 31.3 (1994): 333-337.
21. Olaleru, Johnson O. “ON the Convergence Rates of Picard, Mann and Ishikawa iterations of generalized contractive operators.” Studia Universitatis Babes-Bolyai, Mathematica 4 (2009).
22. Harjani, Jackie, Belen López, and Kishin Sadarangani “Existence and uniqueness of mild solutions for a fractional differential equation under Sturm-Liouville boundary conditions when the data function is of Lipschitzian type.” Demonstration Mathematica 53.1 (2020): 167–173. https://doi.org/10.1515/dema-2020-0014
23. Furati, Khaled M., and Nasser-eddine Tatar. “An existence result for a nonlocal fractional differential problem.” Journal of Fractional Calculus 26 (2004): 43-51.
24. Kou, Chunhai, Huacheng Zhou, and Changpin Li. “Existence and continuation theorems of fractional Riemann-Liouville type fractional differential equations.” International Jour. of Bifurcation and Chaos 22.4 (2012). https://doi.org/10.1142/S0218127412500770
25. Klimek, Malgorzata, and Om P. Agrawal. “On a Regular Fractional Sturm-Liouville Problem with derivatives of order in (0,1).” Proceedings of the 13th International Carpathian Control Conference (ICCC). IEEE, (2012).
doi:10.1109/CarpathianCC.2012.6228655
26. Klimek, Malgorzata, and Om Prakash Agrawal. “Fractional Sturm–Liouville problem.” Comp. Math. Appl. 66.5(2013): 795-812. https://doi.org/10.1016/j.camwa.2012.12.011
27. Machado, J. Tenreiro, Virginia Kiryakova, and Francesco Mainardi. “Recent history of fractional calculus.” Communications in nonlinear science and numerical simulation 16.3 (2011): 1140-1153. https://doi.org/10.1016/j.cnsns.2010.05.027
28. Ciesielski, Mariusz, Malgorzata Klimek, and Tomasz Blaszczyk. “The fractional Sturm–Liouville problem-Numerical approximation and application in fractional diffusion.” J of Com. & App. Math. 317 (2017): 573–588. https://doi.org/10.1016/j.cam.2016.12.014
29. Klimek, Małgorzata, Agnieszka B. Malinowska, and Tatiana Odzijewicz. “Applications of the Fractional Sturm–Lioville problem to the Space–Time Fractional Diffusion in a finite Domain.” Fractional Calculus and Applied Analysis 19.2 (2016): 516–550. https://doi:10.1515/fca-2016-0027
30. Klimek, Malgorzata, Mariusz Ciesielski, and Tomasz Blaszczyk. “Exact and Numerical Solutions of the Fractional Sturm–Liouville problem.” Fractional Calculus and Applied Analysis 21.1 (2018): 45–7. doi: 10.1515/fca-2018-0004 .
31. Shahzad, Naseer, and Habtu Zegeye. “On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces.” Nonlinear Analysis: Theory, Methods & Applications 71.3–4 (2009): 838 – 844.
32. Chipot, Michel. Handbook of Differential Equations: Stationary Partial Differential Equations. 6 (2008): 503-583. doi.org/10.1016/S1874-5733(08)80024-1
33. Popescu, Ovidiu. “Picard iteration converges faster than Mann iteration for a class of quasicontractive operators.” Math. Communications 12.2 (2007): 195-202.
34. Podlubny, Igor. “Fractional Differential Equations.” Academic Press, London (1999).
35. Podlubny, Igor. “Geometric and physical interpretation of fractional integration and fractional differentiation”. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. Fract. Calc. Appl. Anal. 5.4 (2002): 367-386. doi.org/10.48550/arXiv.math/0110241
36. Podlubny, Igor, et al. “Analogue realizations of fractional-order controllers.” Nonlinear Dynamic 29(2002): 281-296.
37. Pandey, Prashant K., Rajesh K. Pandey, and Om P. Agrawal. “Variationalapproximation for Fractional Sturm–Liouville problem.” Fractional Calculus and Applied Analysis 23 (2020): 861–874. doi: 10.1515/fca-2020-0043
38. Rivero, Margarita, Juan Trujillo, and M. Velasco. “A fractional approach to the Sturm-Liouville problem.” Open Physics 11.10 (2013): 1246-1254. doi:10.2478/s11534-013-0216-2
39. Chang, Shih-shen, et al. “Iterative Approximations of Fixed Points and Solutions for Strongly Accretive and Strongly Pseudo-Contractive Mappings in Banach Spaces.” Journal of Mathematical Analysis and Applications 224.1 (1998): 149 − 165.
40. Abbas, Syed. “Existence of Solutions to Fractional order ordinary and Delay differential equations and applications.” Electronic Journal of Differential Equations (EJDE) [electronic only] 2011 (2011): 1–11.
41. Berinde, Vasile, and F. Takens. “Iterative Approximation of Fixed Points.” Iterative approximation of fixed points 1912. Berlin: Springer (2007).
42. Berinde, Vasile. “Existence and approximation of Solutions of some first order iterative differential equations.” Miskolc Mathematic Notes 11.1 (2010): 13–26.
43. Berinde, Vasile.; “Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators.” Fixed Point Theory & Applications 2004.2 (2004): 97–105. dx.doi.org/10.1155/S1687182004311058
44. Mann, W. Robert. “Mean value methods in iteration.” Proceedings of the American Mathematical Society 4.3 (1953): 506–510.
45. Wang, Wei-Chuan. “Some notes on conformable fractional Sturm–Liouville problems.” Boundary Value Problems 2021, 103 (2021). doi.org/10.1186/s13661-021-01581-y
46. Yang, Xiong, Zhongli Wei, and Wei Dong. “Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations.” Communications in Nonlinear Science and Numerical Simulation 17.1 (2012): 85–92.
47. Yu, Cheng, and Guozhu Gao. “Existence of fractional differential equations.” Journal of Mathematical Analysis and Applications 310.1 (2005): 26-29.
48. Suzuki Tomonari. “Krasnoselskii and Mann's type sequences and Ishikawa's strong convergence theorem.” Proceedings of the Third International Conference on Nonlinear Analysis and Convex Analysis (2004): 527-539.