218925167620+ / 218919656575+ / 218916307390+ / 218911653137+
kshj@elmergib.edu.ly
رقم الإيداع المحلي
95 / 2020
دار الكتب الوطنية بنغازي
ISSN: 2706-9087
المجلد السابع
العدد الرابع عشر لشهر ديسمبر 2022

رجوع

ON SOLUTIONS OF INITIAL VALUE PROBLEM FOR NONLINEAR FRACTIONAL BERNOULLI EQUATIONS

تاريخ الاستلام: 15-7-2022م

تاريخ التقييم: 1-10-2022م

Pages:265-287

Mufeedah Maamar Salih Ahmed
الملخص:

في هذه المقالة، ناقشنا طريقة التحليل لـــAdomian decomposition method التي تمَّ تطبيقها لحل معادلة برنولي التفاضلية الكسرية الغير خطية (الخطية) من الدرجة الثانية مع الشروط الأولية. حيث يتم تحويل معادلة برنولي الكسرية إلى معادلة تفاضلية كسرية غير خطية (خطية) تخضع للشروط الأولية. ثم بحثنا عن وجود حلول تقريبية لهذا النوع من مشاكل القيمة الأولية من خلال تطبيق تقنية التحليلADM ، و ذلك من خلال دراسة بعض الأمثلة التوضيحية لتوضيح التقنية المقترحة و معرفة ما إذا كانت الطريقة المقدمة تظهر نتائج ذات كفاءة جيدة أم لا.

Abstract:

This research article discusses the Adomian decomposition method that has been applied to solving second-order the nonlinear (linear) fractional differential equation for the Bernoulli equation with initial conditions. Firstly, the Bernoulli equation with fractional derivatives is transferred to a nonlinear (linear) fractional differential equation subject to initial conditions. Then it investigated the existence of approximate solutions to this type of initial value problem by applying Adomian decomposition technique. In view of the convergence of this method, some illustrative examples are included to demonstrate the proposed technique and show the efficiency of the presented method.
Keywords: Fractional differential equation; Adomian decomposition method; Caputo fractional derivative; the Bernoulli differential equation with fractional derivative.

المراجع References

1. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu. Gonchar, Distributed order time fractional diffusion equation, Frac. Calc. Appl. Anal. 6 (2003) 259–279.
2. A.M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput. 111 (2000) 33–51.
3. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
4. B.J. West, M. Bologna, P. Grigolini (Eds.), Physics of Fractal Operators, Springer, New York, 2003.
5. B.-C Luis., G.-E Angel., Eric A.-V., Solving delay differential systems with history functions by the Adomian decomposition method. Applied Mathematics and Computation 218 (2012) 5994–6011.
6. C. Li, Y. Wang, Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. Math. Appl. 57 (2009) 1672–1681.
7. D. Băleanu, New applications of fractional variational principles, Rep. Math. Phys. 61 (2008) 199–206.
8. D. Băleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, in: Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston, 2012.
9. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation, Appl. Math. Comput. 191 (2007) 12–20.
10. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College, London, 2010.
11. G. Adomian, R. Rach, Inversion of nonlinear stochastic operators, J. Math. Anal. Appl. 91 (1983)39-46.
12. G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988) 501–544.
13. G. Adomian, R. Rach, Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition, J. Math. Anal. Appl. 174 (1993)118–137.
14. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers., Boston, 1994.
15. G.C. Wu, Adomian decomposition method for non-smooth initial value problems, Math. Comput. Modelling 54 (2011) 2104–2108.
16. G.C. Wu, Y.G. Shi, K.T. Wu, Adomian decomposition method and non-analytical solutions of fractional differential equations, Romanian J. Phys. 56 (2011) 873–880.
17. H. Khan, R. Shah, P. kumam, D. Baleanu, M. Arif, An Efficient Analytical Technique, for The Solution of Fractional-Order Telegraph Equations. Mathematics 2019, 7, 5; doi:10.3390/math7050005. www.mdpi.com/journal/mathematics.
18. H. Jafari, C.M. Khalique, M. Nazari, An algorithm for the numerical solution of nonlinear fractional-order Vander Pol oscillator equation, Math. Comput.Modelling 55 (2012) 1782–1786.
19. H. Jafari, S.A. Yousefi, M.A. Firoozjaee, S. Momani, C.M. Khalique, Application of Legendre wavelets for solving fractional differential equations, Comput.Math. Appl. 62 (2011) 1038–1045.
20. H. Jafari, M. Nazari, D. Baleanu, C.M. Khalique, A new approach for solving a system of fractional partial differential equations, Comput. Math. Appl. (2012). http://dx.doi.org/10.1016/j.camwa.2012.11.014
21. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
22. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg. 167 (1998)57–68.
23. J.S. Duan, M.Y. Xu, Concentration distribution of fractional anomalous diffusion caused by an instantaneous point source, Appl. Math. Mech. (English Ed.) 24 (2003) 1302–1308.
24. J.S. Duan, Time- and space-fractional partial differential equations, J. Math. Phys. 46 (2005) 13504–13511.
25. J.S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach–Adomian–Meyers modified decomposition method, Appl. Math. Comput. 218 (2012) 8370–8392.
26. J.S. Duan, R. Rach, D. Baleanu, A.M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Frac. Calc. 3 (2012) 73–99.
27. J. Sunday, M. P. Agah, J. A. Kwanamu, Semi-Analytical Method for the Computation of Nonlinear Second Order Differential Equations. Journal of Scientific Research & Reports;V.14(3): 1-9, 2017; Article no.JSRR.3293;ISSN: 2320-0227.
28. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
29. K. Diethelm, N.J. Ford, A.D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms 36 (2004) 31–52.
30. L.N. Song, H.Q. Zhang, Solving the fractional BBM-Burgers equation using the homotopy analysis method, Chaos Soliton Fractals 40 (2009) 1616–1622.
31. L.N. Song, W.G. Wang, Approximate rational Jacobi elliptic function solutions of the fractional differential equations via the enhanced Adomian decomposition method, Phys. Lett. A 374 (2010) 3190–3196.
32. M. S. Rawashdeh, S. Maitama, Solving nonlinear ordinary differential equations using the NDM. Jou. of Appl. Anal. and Comp.; V.5,N.1, Feb. 2015, 77-88, doi:10.11948/2015007
33. M. M. Ahmed, Bernoulli differential equation of second order with fractional derivative, Jour. of Hum. Sci. & Soc. Sci.(2020);V.10, Pp. 209-222
34. N.T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 131 (2002) 517–529.
35. Q. Wang, Numerical solutions of fractional Boussinesq equation, Commun. Theor. Phys. (Beijing, China) 47 (2007) 413–420.
36. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals & Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
37. S. Abbasbandy, Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput.170 (2005) 648–656.
38. S.Z. Rida, H.M. El-Sherbiny, A.M. Arafa, On the solution of the fractional nonlinear Schrdinger equation, Phys. Lett. A 372(2008)553–558.
39. T.A. Abassy, Improved Adomian decomposition method, Comput. Math. Appl. 59 (2010) 42–54.
40. T.M. Atanackovic, B. Stankovic,. On a system of differential equations with fractional derivatives arising inrod theory, J. Phys. A 37(2004) 1241–1250.
41. V. Daftardar-Gejji, H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl. 301 (2005)508–518.
42. Y. Chen, H.L. An, Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives, Appl. Math. Comput. 200 (2008) 87–95.
43. Z.M.Odibat, S.Momani, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model. 32 (2008) 28–39.