218925167620+ / 218919656575+ / 218916307390+ / 218911653137+
kshj@elmergib.edu.ly
رقم الإيداع المحلي
95 / 2020
دار الكتب الوطنية بنغازي
ISSN: 2706-9087
المجلد السادس
العدد الثاني عشر لشهر ديسمبر 2021

رجوع

التأثير التضادي للأرتيميا (Artemia) ضد بعض الأنواع البكتيرية المسببة للإصابات المعوية

تاريخ الاستلام: 15-11-2021م

تاريخ التقييم: 28-12-2021م

Pages:146-162

هند محمد خلف الله - منى عبدالسلام لويفة - ربيعه محمد اشعيوي - صالحة جمعة إبراهيم - عائشة محمد شهلول
الملخص:

الملخص الارتيميا (Artemia) أحد الأنواع البحرية التي تستخدم في مناطق محدودة من العالم، ونظرًا للاستخدام الشائع لها في الجنوب الليبي كغذاء وعلاج للأمراض المعوية دون الاعتماد على أساس علمي، وفي نفس الوقت تزايد مقاومة البكتيريا للمضادات الحيوية أجريت هذه الدراسة بهدف: دراسة مدى تأثير المنقوع والمستخلص المائي والعضوي كمضاد بكتيري على بعض الأنواع البكتيرية المسببة للأمراض المعوية واختبار التأثير التآزري مع المضادات الحيوية، تم جمع عينات الدود وتحضير منقوع، ومستخلص مائي (ساخن وبارد)، ومستخلص عضوي، جميعها بتراكيز2، و5، و10، و20, و40%، بينت النتائج أن لمنقوع الدود (بارد وساخن) تأثير تثبيطي ضد S. aureus ATCC 6538P والساخن بتركيزات 10، و20، و40% ضد E.coli ATCC10536، وأن للمستخلص المائي (ساخن وبارد) تأثير بتركيز 20 و40% ضد E.coli ATCC10536 وS.aureus على التوالي، والمستخلص العضوي ضد E.coli ATCC10536، أشارت النتائج إلى زيادة حساسية الأنواع البكتيرية ماعدا E.coli (العزلة السريرية) للمضاد Neomycim المشبع بالمستخلص البارد بالتراكيز المدروسة وإضافة لذلك، زادت حساسية S. typhimurium ATCC 14028 وE.coli ATCC10536 و S. aureus ATCC 6538P للمضاد Streptomycin المشبع بالمستخلص الساخن، وحساسية S. typhimurium ATCC 14028 و E.coli ATCC10536 للمضاد Kanamycin وحساسية وE.coli ATCC10536 وS. aureus ATCC 6538P للمضاد Amikacin، أما العضوي زاد من حساسية E.coli للمضاد Kanamycin المشبع بجميع التراكيز و E.coli السريرية و S. aureus ATCC 6538P للمضاد Neomycim. أظهر المضاد Neomycim أفضل تأثير تآزري ضد جميع الأنواع بجميع التراكيز للمستخلص المائي (بارد وساخن) والعضوي.

كلمات افتتاحية: الأرتيميا، الإصابات المعوية، المضادات الحيوية، البكتيريا، العلاجات البحرية، ,Antibiotic intestinal disease

Abstract:

Artemia is one of the marin species, and it is used in limited parts of the world. Due to its common use in the southern Libya as food and drug for intestinal diseases without scientific evidences, and at the same time there is an increasing bacterial resistance to antibiotics, this study was conducted to investigate the effect of soaked, aqueous and organic extract (according to conventional doses of Artemia) on some enteric pathogenic bacteria. Samples of Adood (Artemia) were collected, and the extracts were prepared by soaking, aqueous (hot and cold) extract and ethanol extract at concentrations of 2, 5, 10, 20, 40%. The results showed that soaked (cold and hot) inhibited S. aureus ATCC 6538P, and hot with 10, 20, 40% inhibited E.coli ATCC10536. Aqueous extract 20% inhibited E.coli, and 40% inhibited S. aureus ATCC 6538P. The organic extract inhibited E.coli ATCC10536 only. Saturated antibiotics with cold aqueous extract indicated an increase in the sensitivity of bacterial species, except clinical E.coli for saturated Neomycim at all the concentrations. In addition, it increased the sensitivity of S. typhimurium ATCC 14028, E.coli ATCC10536 and S. aureus ATCC 6538P for saturated Streptomycin with hot. S. typhimurium ATCC 14028 and E.coli ATCC10536 for Kanamycin and E.coli ATCC10536 and S. aureus ATCC 6538P for Amikacin. While organic extract increased the sensitivity of E.coli to the saturated Kanamycin with all the concentrations and the clinical E.coli and S. aureus ATCC 6538P for Neomycim. The best synergistic effects against all species with all the concentrations of aqueous extract (cold and hot) and organic was noted with Neomycim.

المراجع References

1. Konuklugil, B. and Gözcelïloglu, B.(2015). Antimicrobial activity of marine samples collected from the different of coastsTurkey. Turkish Journal of Pharmaceutical Sciences. 12(3), 337-344.
2. Devi, P., Wahidulla,S., Kamat,T., and Souza, D. (2011). Screening marine organisms for antimicrobial activity against clinical pathogens. Indian Journal of Geo- Marine Sciences. 40(3): 338-346.
3. Manivasagan, P., Venkatesana, J., Sivakumarc,K., and Kima, S. (2014). Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiological Research. 169 (2014): 262– 278.
4. Debbab, A., Aly, A., Lin, W., and Proksch, P. (2010). Bioactive compounds from marine bacteria and fungi. Microbial Biotechnology. 3(5): 544–563.
5. Hamsah, Widanarni, Alimuddin, Yuhana, M. and Zairin, M.( 2017). The nutritional value of Artemia sp. enriched with the probiotic Pseudoalteromonas piscicida and the prebiotic mannan-oligosaccharide. Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society. 10(1): 8-17
6. Mana, P. N., Vahabzadeh, H., Seidgar, M.,Hafezieh, M., and Pourali, H. R. (2014). Proximate composition and fatty acids profiles of Artemia cysts,and nauplii from different geographical regions of Iran. Iranian Journal of Fisheries Sciences. 13(3): 761 -775.
7. Akbary P., Hosseini S. A. and Imanpoor M. R. (2011). Enrichment of Artemia nauplii with essential fatty acids and vitamin C: effect on rainbow trout (Oncorhynchus mykiss) larvae performance. Iranian Journal of Fisheries Sciences.10(4):557-569.
8. Pronob Das, Sagar C., Mandal, S. K., Bhagabati, M. S., Akhtar4 and S. K. and Singh. (2012). important live food organisms and their role in aquaculture. P. 69–86. in: Sukham, M. (ed). Narendra Publishing House.
9. Herawati, V., Hutabarat, J. and Radjasa, O. (2014). Nutritional content of Artemia sp. fed with chaetoceros calcitrans and skeletonema costatum. Hayati Journal of Biosciences. 21(4): 166-172.
10. Le, C. H. (2014). The effect of enrichment on the fatty acid composition of artemia salina. retrieved on 7.13.2019, from:
www.unuftp.is/static/fellows/document/chau14prf.pdf
11. Arcanjo, D.D., Albuquerque, A.C., Melo-Neto, B. Santana, L., Medeiros, M.G. and Citó, A.M.(201). Bioactivity evaluation against Artemia salina leach of medicinal plants used in Brazilian northeastern folk medicine .Brazilian Journal of Biology. 72(3):505-509
12. Ozusaglam, M. A., Cakmak. Y. S. and Kaya, M.(2013). The Biotechnological potential of Artemia salina fatty acids. Jouralof Pure and Applied Microbiology. 7(3):1567-1575.
13. Andrew, P. and Valerie, J. (2009). Antibacterial free fatty acids: active, michanisms of action and biotechnological potetional. Applied Microbiology and Biotechnology. 85(6): 1629-1642.
14. Dumitrascu, M. (2011). Artemia salina. Balneo-Research Journal. 2(4):119- 122.
15. مصطفى، سليمان مصطفى، الامام، فاطمة عبدالوهاب، فرج، امل محمد. (2014). دورة حياة الأرتيميا وعلاقتها بالإنتاجية بحيرة قبرعون - جنوب ليبيا. مجلة جامعة سبها (العلوم التطبيقية) المجلد الثالث عشر العدد الأول.
16. Stappen, G.V. (2019). Introduction, biology and ecology of Artemia. retrieved on 28- 6-2019 from:
http://www.fao.org/3/W3732E/w3732e0m.htm#b24,1,2%Biology%20and%20ecology%20of%20Artemia.
17. Khan, U. A., Rahman, H., Niaz, Z, Qasim, M., Khan, J., Tayyaba, And Rehman, B.(2013). Antibacterial activity of some medical plants against selected human pathogenic bacteria. European Journal of Microbiology and Immunology .3 (4): 272–274.
18. Harley, J. and Prescott, L . (2002). Laboratory exercises in microbilogy. ed 5th . McGraw-Hill Companies.p257-260.
19. Tizol-Correa, R., Carreón-Palau, L., Arredondo-Vega, B., Murugan,G., Torrentera, L., Teresita, D. Maldonado-Montiel, N. and Maeda-Martínez, A. (2006). Fatty acid composition of artemia (branchiopoda: anostraca) cysts from tropical salterns of southern Mexico and Cuba. Journal of Crustacean Biology, 26(4):503-509..
20. Hafezieh M., Kamarudin , M. S.,Saad, C. R., Abd Sattar, M. K., Agh N., Valinassab T., Sharifian M. and Hosseinpour H. (2010). Effects of enriched Artemia urmiana with hufa on growth, survival, and fatty acids composition of the Persian sturgeon larvae (acipenser persicus). Iranian Journal of Fisheries Sciences. 9(1): 61-72.
21. Benkendorff, K., Davis, A.R., Rogers, C.N., Bremner, J.B. (2005). Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and theirassociated antimicrobial properties. The Journal of Experimental Marine Biology and Ecology. 316(1): 29–44.
22. Chandrasekaran, M. Senthilkumar, A. and. Venkatesalu,V. (2011). Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of sesuvium portulacastrum l. European Review for Medical and Pharmacological Sciences. 15(7):775-780.
23. Akoachere, J. K.Tanih, N. F., Ndip, L. M. and Ndip, R (2009). Phenotypic Characterization of Salmonella Typhimurium Isolates from Food-animals and Abattoir Drains in Buea, Cameroon. Journal of Health, Population, and Nutrition. 27 (5):612-618.
24. DiMarzio, M., Shariat, N., Kariyawasam, S., Barrangou, R. and Dudley, E. (2013). Antibiotic Resistance in Salmonella enterica serovar typhimurium associates with CRISPR sequence type. Antimicrobial Agents Chemotherapy. 57(9): 4282–4289.
25. Naxhije Hila N., Devolli, A., Puto, K., Mali, S., Brahimaj, Z., Peqini, E., and Dervishi, A. (2011). The dinamics of antimicrobial resistance of Salmonella typhimurium isolates. Journal of International Medical Association “Bulgaria”. 17 (1): 111-115.
26. Yoon,K., Song,., Shin, M.,Hyun-Cheol Lim, Yoon, Y., Jeon, D., Ha,H., Yang, S and Kim, J. (2017). Antibiotic resistance patterns and serotypes of Salmonella spp. isolated at jeollanam-do in Korea. Osong Public Health and Research Perspectives .8(3): 211–219.
27. Maka, L., and Sciezska, H. (2015). Occurrence and antimicrobial resistance of Salmonella spp. isolated from food other than meat in Poland. The Annals of Agricultural and Environmental Medicine Journal. 22(3): 403-408.
28. Malema,M. S., Abia, K. L., Tandlich, R., Zuma, B., Kahinda, J. M. and Ubomba-Jaswa, E. (2018). Antibiotic-Resistant Pathogenic Escherichia Coli Isolated from Rooftop Rainwater-Harvesting Tanks in the Eastern Cape, South Africa. International journal of environmental research and public health . 15(5): 892.
29. Rasheed, M., Thajuddin,N., Ahamed,P., Teklemariam, Z. and Jamil, K.(2014). Antimicrobial drug resitance in strains of Escherichia coli Isolated from Food sources. Revista do Instituto de Medicina Tropical de São Paulo. 56(4): 341–346
30. Kibret, M. and Abera, B. (2011). Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. African Health Sciences. 11(Suppl 1): S40–S45.
31. Tadesse, D. A., Zhao, S., Tong, E., Ayers, S., Singh, A., Bartholomew, M. and McDermott, F. (2012). Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerging Infectious Diseases. 18(5):741-749.
32. Bitrus,A. A., Peter, O. M., Abbas, M. and Goni, M. D. (2018). Staphylococcus aureus: a review of antimicrobial resistance mechanisms. Veterinary Sciences: Research and Reviews. 4(2):43-54.
33. Foster, T. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects . FEMS Microbiology Reviews. 41(3): 430-449.
34. Massawe, H. F., Mdegela, R. H. and Kurwijila, L. R. (2019). Antibiotic resistance of Staphylococcus aureus isolates from milk produced by smallholder dairy farmers in Mbeya Region, Tanzania. International Journal of One Health. 5:31-37.
35. The Centers for Disease Control and Prevention (CDC). (2018). How Antibiotic Resistance Happens. retrieved on 7.5.2019 from:
https://www.cdc.gov/drugresistance/about/how-resistance-happens.html#collapse_92455c9e26f0b3713.
36. Munita, J.M. and Arias, C.A. (2016). Mechanisms of Antibiotic Resistance. retrieved on 7.11.2020 from:
https://www.researchgate.net/profile/Jose_M_Munita/publication/303659766_Mechanisms_of_Antibiotic_Resistance/links/574bbfac08ae5c51e29eaf56/Mechanisms-of-Antibiotic-Resistance.pdf