218925167620+ / 218919656575+ / 218916307390+ / 218911653137+
kshj@elmergib.edu.ly
رقم الإيداع المحلي
95 / 2020
دار الكتب الوطنية بنغازي
ISSN: 2706-9087
المجلد السادس
العدد الثاني عشر لشهر ديسمبر 2021

رجوع

استخدام نموذج الانحدار الذاتي والمتوسط المتحرك للتنبؤ بحالات الإصابة بفيروس كورونا الجديد في ليبيا
Utilizing Auto-Regressive Integrated Moving Average to Predict Newly Coronavirus Cases in Libya

تاريخ الاستلام: 3-12-2021م

تاريخ التقييم: 15-12-2021م

Pages:290-300

Mansour Alssager - Zulaiha Ali Othman
الملخص:

في وقتنا الحالي، يعد وباء كورونا تهديدًا عالميًا كبيرًا. فلقد أثر على حياة الملايين من الناس حول العالم، و أدى إلى وفاة مئات الآلاف. بناء علي ذلك من المهم التنبؤ بعدد الحالات الجديدة بهدف المساعدة في الوقاية من المرض وكذلك لمساعدة الرعاية الصحية في الاستعداد المبكر لأي طارئ. استخدم العديد من الباحثين طرقًا مختلفة لتعلم الآلة للتنبؤ بالاتجاه المستقبلي للوباء. في هذا البحث تم اقتراح استخدام نموذج الانحدار الذاتي والمتوسط المتحرك للتنبؤ بالحالات الجديدة اليومية في ليبيا على مدى الأشهر الثلاثة المقبلة. حيث تمت معالجة العدد الإجمالي للحالات المؤكدة مسبقًا واستخدامها للتنبؤ بانتشار الفيروس. حيث تم معالجة العدد التراكمي للحالات المؤكدة واستخدامها للتنبؤ بمدي انتشار الفيروس. وبناءً على النتيجة التي تم الحصول عليها من التجربة، من المتوقع أن يرتفع عدد الحالات في المستقبل القريب ليصل إلى 1250 حالة جديدة كل يوم. سيساعد هذا البحث أعضاء الطاقم الطبي والحكومي على التخطيط للظروف القادمة، مما يزيد من جاهزية نظام الرعاية الصحية في البلاد.

Abstract:

Currently, Coronavirus is a major worldwide threat. It has affected millions of people around the world, resulting in hundreds of thousands of deaths. It is indeed important to forecast the number of new cases in aims to assist in disease prevention and healthcare service readiness. Many researchers used different mathematical and machine learning methods to forecast the pandemic's future trend. This research proposes an autoregressive integrated moving average model to forecast the estimated daily new cases in Libya over the next three months. The total number of confirmed cases is pre-processed and used to forecast the virus's spread. The cumulative number of confirmed cases is pre-processed and used to forecast the virus's spread. Based on the result obtained from the experiment, the number of cases expected to rise in the near future, reaching up to 1250 new cases every day. This research would help the government and medical staff members to plan for the upcoming conditions, as a result, increase the readiness of healthcare systems.

Keywords: COVID19, Coronavirus, Pandemic, ARIMA model, Epidemic, forecast, Libya

المراجع References

[1] G. Onder, G. Rezza, and S. Brusaferro, "Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy," Jama, vol. 323, pp. 1775-1776, 2020.
[2] F. B. Hamzah, C. Lau, H. Nazri, D. V. Ligot, G. Lee, C. L. Tan, et al., "CoronaTracker: worldwide COVID-19 outbreak data analysis and prediction," Bull World Health Organ, vol. 1, 2020.
[3] R. Allard, "Use of time-series analysis in infectious disease surveillance," Bulletin of the World Health Organization, vol. 76, p. 327, 1998.
[4] J. Coresh, H. J. Heerspink, Y. Sang, K. Matsushita, J. Arnlov, B. C. Astor, et al., "Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies," The lancet Diabetes & endocrinology, vol. 7, pp. 115-127, 2019.
[5] C. Anderson, K. Teo, P. Gao, H. Arima, A. Dans, T. Unger, et al., "Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies," The Lancet Neurology, vol. 10, pp. 43-53, 2011.
[6] S.-s. Zhou, F. Huang, and Y.-z. Shen, "Application of ARIMA model on prediction of malaria incidence," J Pathogen Biol, vol. 2, pp. 284-6, 2007.
[7] S. Polwiang, "The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017)," BMC infectious diseases, vol. 20, pp. 1-10, 2020.
[8] Q. Liu, Z. Li, Y. Ji, L. Martinez, U. H. Zia, A. Javaid, et al., "Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses," Infection and drug resistance, vol. 12, p. 2311, 2019.
[9] C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, vol. 74, pp. 902-924, 2017.
[10] W.-Y. Chang, "A literature review of wind forecasting methods," Journal of Power and Energy Engineering, vol. 2, p. 161, 2014.
[11] A. Hernandez-Matamoros, H. Fujita, T. Hayashi, and H. Perez-Meana, "Forecasting of COVID19 per regions using ARIMA models and polynomial functions," Applied Soft Computing, vol. 96, p. 106610, 2020.
[12] R. Takele, "Stochastic modelling for predicting COVID-19 prevalence in East Africa Countries," Infectious Disease Modelling, vol. 5, pp. 598-607, 2020.
[13] M. Batista, "Estimation of the final size of the COVID-19 epidemic," MedRxiv, 2020.
[14] D. Fanelli and F. Piazza, "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, vol. 134, p. 109761, 2020.
[15] R. Gupta and S. K. Pal, "Trend Analysis and Forecasting of COVID-19 outbreak in India," MedRxiv, 2020.
[16] S. T. Nassir, A. B. Khamees, and W. T. Mousa, "Estimation the Missing Data of Meteorological Variables In Different Iraqi Cities By using ARIMA Model," Iraqi Journal of Science, vol. 59, pp. 792-801, 04/29 2018.
[17] R. H. Shumway, D. S. Stoffer, and D. S. Stoffer, Time series analysis and its applications vol. 3: Springer, 2000.
[18] G. C. Reinsel, Elements of multivariate time series analysis: Springer Science & Business Media, 2003.
[19] G. Ding, X. Li, Y. Shen, and J. Fan, "Brief Analysis of the ARIMA model on the COVID-19 in Italy," medRxiv, 2020.
[20] A. Jadevicius and S. Huston, "ARIMA modelling of Lithuanian house price index," International Journal of Housing Markets and Analysis, 2015.