218925167620+ / 218919656575+ / 218916307390+ / 218911653137+
95 / 2020
دار الكتب الوطنية بنغازي
ON SOME SUBCLASSES OF MULTIVALENT STARLIKE FUNCTIONS
تاريخ الاستلام: 4-5-2021م
تاريخ التقييم: 19-5-2021م
Pages:303-319
S. M. Amsheri - N. A. Abouthfeerah
في هذه الورقة البحثية نقدم فصلين جزئيين جديدين T_(m.λ.μ,η,δ)^* (p,α,β,σ) و C_(m,λ,μ,η,δ) ( p,α,β,σ) من الدوال النجمية متعددة التكافؤ في قرص الوحدة المفتوح معرفين باستخدام مؤثرمعين من حساب التفاضل و التكامل الكسري. سوف نحصل على متباينات المعامل وخواص التشوه للدوال المنتمية إلى الفصلين الجزئيين أعلاه. بالإضافة إلى تحديد أنصاف أقطار التحدب والنجمية للدوال المنتمية إلى هاتين الفصلين الجزئيين.
In the present paper, we introduce two new subclasses T_(m.λ.μ,η,δ)^* (p,α,β,σ) and C_(m,λ,μ,η,δ) ( p,α,β,σ) of multivalent starlike functions in the open unit disk defined by using certain fractional calculus operator. We obtain coefficient inequalities and distortion properties for functions belonging to the above subclasses. The radii of convexity and starlikeness for functions belonging to these subclasses are also determined.
Keywords: multivalent (or p-valent) functions, starlike functions, convex functions, fractional derivative operator.
المراجع References
1- S. M. Amsheri and V. Zharkova, Subclasses of p-valent starlike functions defined by using certain fractional derivative operator, Int. J. Math. Sci. Edu. 4(1)( 2011), 17- 32.
2- M. K. Aouf, H. M. Hossen, Certain subclasses of p-valent starlike functions, Proc. Pakistan Acad. Sci. 43(2)(2006), 99–104.
3- M. K. Aouf, A. O. Mostafa, and H. M. Zayed, Some characterizations of integral operators associated with certain classes of p-valent functions defined by the Srivastava–Saigo–Owa fractional differintegral operator, Complex Anal. Oper. Theory 10(2016), 1267–1275
4- V. P. Gupta, Convex class of starlike function, Yokohama Math. J. 32 (1984), 55-59.
5- S. Owa, On the distortion theorems-I, Kyungpook. Math. J. 18(1978), 53-59.
6- S, Owa, On certain classes of p-valent functions with negative coefficients, Bull. Belg. Math. Soc. Simon stevin, 59 (1985), 385-402.
7- D. A. Partil, N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), 27 (1983) 145-160.
8- H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51, (1975), 109-116.
9- H. M. Srivastava and P.M. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York/ Chichester/ Brishane/ Toronto, 1985.
10- H. M. Srivastava and S. Owa, (Eds), Univalent functions, fractional calculus, and their applications, Halsted Press/Ellis Horwood Limited/John Wiley and Sons, New York/Chichester/Brisbane/Toronto, 1989.
11- H. M. Srivastava, S. Owa, Certain subclasses of starlike function - I, J. Math. Anal. Appl. 161(1991a), 405-415
12- H. M. Srivastava, S. Owa, Certain subclasses of starlike function - II, J. Math. Anal. Appl. 161(1991b), 416-425
13- H. M. Zayed, A. Mohammadein, and M. K. Aouf, Sandwich results of p-valent functions defined by a generalized fractional derivative operator with application to vortex motion, Rev . R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM (2018). https://doi.org/10.1007/s13398-018-0559-z.